
Overview 

 Understand Classes and Objects. 

 

 Understand some of the key 

concepts/features in the Object Oriented 

paradigm. 

 

 Benefits of Object Oriented Design 

paradigm. 

 

 1 



Object-Oriented Programming 

Object-oriented programming is a method 

of implementation in which programs are 

organized as cooperative collections of 

objects, each of which represents an 

instance of some class, and whose classes 

are all members of a hierarchy of classes 

united via inheritance relationships. 

2 



Requirements 

 It supports objects that are data 

abstractions with an interface of named 

operations and a hidden local state. 

 Objects have an associated type [class]. 

 Types [classes] may inherit attributes 

from supertypes [superclasses]. 

3 



OOP: model, map, reuse, extend 

 Model the real world 
problem to user’s 
perceive; 

 Use similar metaphor in 
computational env. 

 Construct reusable 
components; 

 Create new 
components from 
existing ones. 

4 



Examples of Objects 

Figure 1.9: Examples of objects

CAR

VDU

BOY GIRL

TREEBOOK

CLOCK

TRIANGLE

5 



Classes: Objects with the same 

attributes and behavior 
Person Objects

Vehicle Objects

Polygon Objects

Abstract Person Class
Attributes:

Operations:

Name, Age, Sex

Speak(), Listen(), Walk()
Into

Abstract Vehicle Class
Attributes:

Operations:

Name, Model, Color

Start(), Stop(), Accelerate()
Into

Abstract
Polygon Class
Attributes:

Operations: Draw(), Erase(), Move()

Vertices, Border,

Color, FillColorInto

Figure 1.12: Objects and classes 6 



Basic OOP terminology  
Object. contains data and instructions  

Class. blueprint for an object 

Attribute. describe the state of objects 

Data Type. describes what kind of information a 
certain attribute is 

Behavior. describe what objects can do 

Method. a set of instructions  

Inheritance. Some objects derive attributes and 
behaviors from other objects 

Encapsulation. Combining data and methods 
together 



Object Oriented Paradigm: Features 

8 

OOP  
Paradigm 

Encapsulation 

Multiple Inheritance 

Genericity 

Delegation 

Persistence 

Polymorphism 

Single Inheritance 

Data Abstraction 



Java C# 

Java’s OO Features 

9 

OOP  
Paradigm 

Encapsulation 

Multiple Inheritance 

Genericity 

Delegation 

Persistence 

Polymorphism 

Single Inheritance 

Data Abstraction 

C++ 



Encapsulation 

 It associates the code 

and the data it 

manipulates into a single 

unit; and keeps them 

safe from external 

interference and misuse. 

 

10 

OOP  
Paradigm 

Encapsulation 

Multiple Inheritance 

Genericity 

Delegation 

Persistence 

Polymorphism 

Single Inheritance 

Data Abstraction 

Data 

Functions 



Data Abstraction 

 The technique of 
creating new data types 
that are well suited to an 
application.  

 It allows the creation of 
user defined data types, 
having the properties of 
built data types and a set 
of permitted operators. 

 In Java, partial support. 

 In C++, fully supported 
(e.g., operator 
overloading). 

11 

OOP  
Paradigm 

Encapsulation 

Multiple Inheritance 

Genericity 

Delegation 

Persistence 

Polymorphism 

Single Inheritance 

Data Abstraction 



Abstract Data Type (ADT) 

A structure that contains both data 

and the actions to be performed on 

that data. 

 

Class is an implementation of an 

Abstract Data Type. 

 

12 



Class- Example 

13 

class Account {  
 private String accountName; 
 private double accountBalance; 
 
   public  withdraw(); 
 public  deposit(); 
 public  determineBalance(); 
} // Class Account 
 



Class 

 Class is a set of attributes and operations that 

are performed on the attributes. 

 

14 

Account 
 
accountName 
accountBalance 
 
 
 
withdraw() 
deposit() 
determineBalance() 
 
 

Student 
 
 
name 
age 
studentId 
 
 

 
 
getName() 
getId() 
 
 
 

Circle  
 
 
centre 
radius 
 
 
 

 
 
area() 
circumference() 
 
 
 



Objects 

 

 An Object Oriented system is a 

collection of interacting Objects. 

 

 Object is an instance of a class. 

 

15 



What are Objects?  

Introduction to objects  

Anything tangible or abstract that 

is relevent 

Objects can have attributes and 

behaviors 

Attributes describe the object 

Behaviors describe what the object 

can do 



Classification of objects   

User Interface objects 

◦ Objects that the user interacts directly 
with 

Operating environment objects 

◦ Provide services to other components 

Task Related objects 

◦ Documents, multimedia, problem 
domain 



Classes/Objects 

18 

Student 
:John 

:Jill 

John and Jill are  
objects of class 

Student 

Circle 
:circleA 

:circleB 

circleA and circleB 
are  

objects of class 
Circle 



Class 

 A class represents a template for several 

objects that have common properties.  

 

 A class defines all the properties common 

to the object  -  attributes  and methods. 

 

 A class is sometimes called the object’s 

type. 

 

19 



Object 

 Objects have state and classes don’t. 
John is an object (instance) of class Student.  

name = “John”, age  = 20,  studentId = 1236 

 

Jill is an object (instance) of class Student.  
name = “Jill”, age  = 22, studentId = 2345 

 

circleA is an object (instance) of class Circle.  
centre = (20,10), radius  = 25 

 

circleB is an object (instance) of class Circle.  
centre = (0,0),  radius  = 10 

 

20 



Encapsulation 

 All information (attributes and methods) in an 
object oriented system are stored within the 
object/class. 

 Information can be manipulated  through 
operations performed on the object/class – 
interface to the class. Implementation is hidden 
from the user. 

 Object support Information Hiding – Some 
attributes and methods can be hidden from the 
user. 

 

21 



Encapsulation  

 To hide the details, package together 

 Access modifiers – public, private and 

protected 



Encapsulation - Example 

23 

class Account {  
 private String accountName; 
 private double accountBalance; 
 
    public  withdraw(); 
 public  deposit(); 
 public  determineBalance(); 
} // Class Account 
 

Deposit 

Withdraw 

Determine Balance 

Account 
balance 

messag
e 

message 

message 



Data Abstraction 

 The technique of creating new data types 

that are well suited to an application.  

 

 It allows the creation of user defined data 

types, having the properties of built in 

data types and more. 

24 



Abstraction - Example 

25 

 

class Account {  

 private String accountName; 

 private double accountBalance; 

 

    public  withdraw(); 

 public  deposit(); 

 public  determineBalance(); 

} // Class Account 

 

 Creates a data 
 type Account 
 
Account acctX; 
 



Inheritance 

 New data types (classes) can be  defined 

as extensions to previously defined types. 

 Parent Class (Super Class) – Child Class 

(Sub Class) 

 Subclass inherits  properties from the 

parent class. 

 

26 

Parent 

Child 

Inherited 
capability 



Inheritance  - Example 

 Example 
◦ Define Person to be a class 
 A Person has attributes, such as age, height, gender 
 Assign values to attributes when describing object 

 
◦ Define student to be a subclass of Person  
 A student has all attributes of Person, plus attributes 

of his/her own ( student no, course_enrolled) 
 A student has all attributes of Person, plus attributes 

of his/her own (student no, course_enrolled) 
 A student inherits all attributes of Person  

◦ Define lecturer to be a subclass of Person 
 Lecturer has all attributes of Person, plus attributes 

of his/her own ( staff_id, subjectID1, subjectID2) 

 
27 



Uses of Inheritance – Multiple Inheritance 

 Inherit properties from more than one class.  

 This is called Multiple Inheritance. 

28 

Shape 

Circle 

Graphics 



Polymorphism 

 Polymorphic which means “many forms” has 
Greek roots. 
◦ Poly – many 

◦ Morphos  - forms. 

 

 In OO paradigm polymorphism has many forms. 

 

 Allow a single  object, method, operator associated 
with different meaning depending on the type of 
data passed to it. 

29 



Persistence 

 The phenomenon where the object outlives 
the program execution. 

 

 Databases support this feature. 

 

 

 In Java, this can be supported if users explicitly 
build object persistency using IO streams. 

30 



Why OOP?  

 Greater Reliability 

◦ Break complex software projects into small, 

self-contained, and modular objects 

 Maintainability 

◦ Modular objects make locating bugs easier, 

with less impact on the overall project 

 Greater Productivity through Reuse! 

 Faster Design and Modelling 

 

31 



Benefits of OOP.. 

 Inheritance: Elimination of Redundant Code 
and extend the use of existing classes. 

 Build programs from existing working modules, 
rather than having to start from scratch.  
save development time and get higher 
productivity. 

 Encapsulation: Helps in building secure 
programs. 

32 



Benefits of OOP.. 

 Multiple objects to coexist without any 
interference. 

 Easy to map objects in problem domain to 
those objects in the program. 

 It is easy to partition the work in a project 
based on objects. 

 The Data-Centered Design enables us in 
capturing more details of model in an 
implementable form. 

33 



Benefits of OOP.. 

 Object Oriented Systems can be easily 

upgraded from small to large systems. 

 Message-Passing technique for communication  

between objects make the interface 

descriptions with external systems much 

simpler. 

 Software complexity can be easily managed. 

34 



Summary 

 Object Oriented Design, Analysis, and 
Programming is a Powerful paradigm 

 Enables Easy Mapping of Real world Objects to 
Objects in the Program 

 This is enabled by OO features: 
◦ Encapsulation 

◦ Data Abstraction 

◦ Inheritance 

◦ Polymorphism 

◦ Persistence 

 Standard OO Design (UML) and Programming 
Languages (C++/Java) are readily accessible. 

35 



References 

 Robert Grimm, G22.2110-001 Programming 

Languages, NYU's Computer Science 

Department 

 Prof. Saman Amarasinghe”, Prof. Martin Rinard, 

MIT Course 6.035 Computer Language 

Engineering  

 “Programming with Java” by Balagurusamny, 

TMH, New Delhi, India. 

 “Mastering C++” by V. Rajuk and R. Buyya, Tata 

McGraw Hill, New Delhi, India. 

36 


