Overview

e Understand Classes and Objects.

e Understand some of the key
concepts/features in the Object Oriented
paradigm.

 Benefits of Object Oriented Design
paradigm.

Object-Oriented Programming

Object-oriented programming is a method
of implementation in which programs are
organized as cooperative collections of
objects, each of which represents an
instance of some class, and whose classes
are all members of a hierarchy of classes
united via inheritance relationships.

Requirements

e It supports objects that are data
abstractions with an interface of named
operations and a hidden local state.

* Objects have an associated type [class].

 Types [classes] may inherit attributes
from supertypes [superclasses].

OOP: model, map, reuse, extend

Object

Function

Object

Function

Function

Function

Object

Function

Function

Model the real world
problem to user’s
perceive;

Use similar metaphor in
computational env.

Construct reusable
components;

Create new
components from
existing ones.

Examples of Objects

R 05 O NAN

VDU BOOK TREE TRIANGLE

Classes: Objects with the same
attributes and behavior

Person Objects

Abstract Person C|§SS
7 Into Attrlbu_tes. Name, Age, .Sex
/& Operations: Speak (), Listen(), Walk()
/v ;1?

o
> el
N

Vehicle Objects

é

AN

|

Abstract Vehicle Class
Attributes: Name, Model, Color

Into .
Operations: start(), Stop(), Accelerate ()

A1
0 o)

Polygon Objects

Polygon Class

Abstract Attributes: Vertices, Border,
—_—> 4
Into Color, FillColor

Operations: Draw (), Erase(), Move()

>

Figure 1.12: Objects and classes

Basic OOP terminology

Object. contains data and instructions
Class. blueprint for an object
Attribute. describe the state of objects

Data Type. describes what kind of information a
certain attribute is

Behavior. describe what objects can do
Method. a set of instructions

Inheritance. Some objects derive attributes and
behaviors from other objects

Encapsulation. Combining data and methods
together

Object Oriented Paradigm: Features

Encapsulation

Data Abstraction
/ Single Inheritance

~_____——| Polymorphism

Paradigm
s Persistence

Delegation

Genericity

Multiple Inheritance

Java’s OO Features

Encapsulation

Data Abstraction | ™\
SN

/ Single Inheritance s
T

00P ~_____——| Polymorphism

Paradigm [l —
\ . _— D
Persistence / P

Delegation

Genericity

Multiple Inheritance

Encapsulation

Encapsulation

* |t associates the code
Data Abstraction and the data it
manipulates into a single
unit; and keeps them
safe from external

Single Inheritance

N

Polymorphism

Pa?a(:II:gm interference and misuse.
s Persistence
\ Delegation
Genericity

Multiple Inheritance

Data Abstraction

NS

OooP
Paradigm

7]

Encapsulation

Data Abstraction

Single Inheritance

Polymorphism

Persistence

Delegation

Genericity

Multiple Inheritance

* The technique of

creating new data types
that are well suited to an
application.

It allows the creation of
user defined data types,
having the properties of
built data types and a set
of permitted operators.

In Java, partial support.

In C++, fully supported
(e.g., operator
overloading).

1

Abstract Data Type (ADT)

e A structure that contains both data
and the actions to be performed on
that data.

e Class is an implementation of an
Abstract Data Type.

Class- Example

class Account {
private String accountName;

private double accountBalance;

public withdraw();

pub
pub
I C

ic deposit();
ic determineBalance();
ass Account

13

Class

» Class is a set of attributes and operations that

are performed on the attributes.

Account

accountName
accountBalance

Student

Circle

withdraw()
deposit()
determineBalance()

name
age
studentId

centre
radius

getName()
getld()

area()
circumference()

14

Objects

* An Object Oriented system is a
collection of interacting Objects.

e Object is an of a

What are Obijects!?
Introduction to objects

* Anything tangible or abstract that
is relevent

» Objects can have attributes and
behaviors

 Attributes describe the object

* Behaviors describe what the object
can do

Classification of objects

e User Interface objects
> Obijects that the user interacts directly
with
» Operating environment objects
> Provide services to other components
» Task Related objects

> Documents, multimedia, problem
domain

Classes/Objects

suen |
o |

:circleA

:circleB

John and Jill are
objects of class
Student

circleA and circleB
are
objects of class
Circle

18

Class

* A class represents a template for several
objects that have common properties.

* A class defines all the properties common
to the object - attributes and methods.

* A class is sometimes called the object’s
type.

19

Object

* Objects have state and classes don’t.

John is an object (instance) of class Student.
name = “John”,age =20, studentld = 1236

Jill'is an object (instance) of class Student.
name ="Jill”,age =22, studentld = 2345

circleA is an object (instance) of class Circle.
centre = (20,10), radius =25

circleB is an object (instance) of class Circle.
centre = (0,0), radius = 10

20

Encapsulation

 All information (attributes and methods) in an
object oriented system are stored within the
object/class.

* Information can be manipulated through
operations performed on the object/class —
interface to the class. Implementation is hidden
from the user.

* Object support Information Hiding — Some
attributes and methods can be hidden from the
user.

21

Encapsulation

* To hide the details, package together
* Access modifiers — public, private and

protected
Any other object can access the data or the method Public
Only methods defined within the class can access Private

Only objects in the same named package

(that is directory) can access Protected

Encapsulation - Example

class Account { message
private String accountName; N
. Withdraw

private double accountBalance;

Deposit-—~ T

messag
e

Account
public withdraw/(); |
public deposit();
public determineBalance();

} Il Class Account \

message

Determine Balancg

23

Data Abstraction

e The technique of creating new data types
that are well suited to an application.

e It allows the creation of user defined data
types, having the properties of built in
data types and more.

24

Abstraction - Example

cla

} /)

-

Creates a data
type Account

Account acctX;

25

Inheritance

* New data types (classes) can be defined
as extensions to previously defined types.

* Parent Class (Super Class) — Child Class
(Sub Class)

* Subclass inherits properties from the
parent class.

26

Inheritance - Example

* Example

> Define to be a class
A Person has attributes, such as age, height, gender
Assign values to attributes when describing object

o Define student to be a subclass of Person

A student has all attributes of Person, plus attributes
of his/her own (student no, course_enrolled)

A student has all attributes of Person, plus attributes
of his/her own (student no, course_enrolled)

A student inherits all attributes of
o Define lecturer to be a subclass of Person

Lecturer has all attributes of Person, plus attributes
of his/her own (staff id, subjectlD |, subjectID?2)

27

Uses of Inheritance — Multiple Inheritance

e Inherit properties from more than one class.
e This is called Multiple Inheritance.

Graphics Shape
JAN JAN

Circle

Polymorphism

* Polymorphic which means “many forms” has
Greek roots.

° Poly — many
> Morphos - forms.

e In OO paradigm polymorphism has many forms.

e Allow a single object, method, operator associated
with different meaning depending on the type of
data passed to it.

29

Persistence

* The phenomenon where the object outlives
the program execution.

e Databases support this feature.

* In Java, this can be supported if users explicitly
build object persistency using |O streams.

30

Why OOP?

* Greater Reliability

> Break complex software projects into small,
self-contained, and modular objects

e Maintainability

> Modular objects make locating bugs easier,
with less impact on the overall project

* Greater Productivity through Reuse!
» Faster Design and Modelling

31

Benefits of OOP.

e Inheritance: Elimination of Redundant Code
and extend the use of existing classes.

 Build programs from existing working modules,
rather than having to start from scratch. =2
save development time and get higher
productivity.

» Encapsulation: Helps in building secure
programs.

32

Benefits of OOP.

e Multiple objects to coexist without any
interference.

e Easy to map objects in problem domain to
those objects in the program.

* |t is easy to partition the work in a project
based on objects.

e The Data-Centered Design enables us in
capturing more details of model in an
implementable form.

33

Benefits of OOP.

* Object Oriented Systems can be easily
upgraded from small to large systems.

* Message-Passing technique for communication
between objects make the interface
descriptions with external systems much
simpler.

» Software complexity can be easily managed.

34

Summary

» Object Oriented Design, Analysis, and
Programming is a Powerful paradigm

» Enables Easy Mapping of Real world Objects to
Obijects in the Program

» This is enabled by OO features:

> Encapsulation
o Data Abstraction
° |nheritance
> Polymorphism

> Persistence

» Standard OO Design (UML) and Programming
Languages (C++/Java) are readily accessible.

35

References

e Robert Grimm, G22.2110-001 Programming

Languages, NYU's
Department

Computer Science

* Prof. Saman Amarasinghe”, Prof. Martin Rinard,

MIT Course 6.035
Engineering
* “Programming wit
TMH, New Delhi,
e “Mastering C++”

Computer Language

h Java” by Balagurusamny,
ndia.

oy V. Rajuk and R. Buyya, Tata

McGraw Hill, New Delhi, India.

36

