
Overview

 Understand Classes and Objects.

 Understand some of the key

concepts/features in the Object Oriented

paradigm.

 Benefits of Object Oriented Design

paradigm.

 1

Object-Oriented Programming

Object-oriented programming is a method

of implementation in which programs are

organized as cooperative collections of

objects, each of which represents an

instance of some class, and whose classes

are all members of a hierarchy of classes

united via inheritance relationships.

2

Requirements

 It supports objects that are data

abstractions with an interface of named

operations and a hidden local state.

 Objects have an associated type [class].

 Types [classes] may inherit attributes

from supertypes [superclasses].

3

OOP: model, map, reuse, extend

 Model the real world
problem to user’s
perceive;

 Use similar metaphor in
computational env.

 Construct reusable
components;

 Create new
components from
existing ones.

4

Examples of Objects

Figure 1.9: Examples of objects

CAR

VDU

BOY GIRL

TREEBOOK

CLOCK

TRIANGLE

5

Classes: Objects with the same

attributes and behavior
Person Objects

Vehicle Objects

Polygon Objects

Abstract Person Class
Attributes:

Operations:

Name, Age, Sex

Speak(), Listen(), Walk()
Into

Abstract Vehicle Class
Attributes:

Operations:

Name, Model, Color

Start(), Stop(), Accelerate()
Into

Abstract
Polygon Class
Attributes:

Operations: Draw(), Erase(), Move()

Vertices, Border,

Color, FillColorInto

Figure 1.12: Objects and classes 6

Basic OOP terminology
Object. contains data and instructions

Class. blueprint for an object

Attribute. describe the state of objects

Data Type. describes what kind of information a
certain attribute is

Behavior. describe what objects can do

Method. a set of instructions

Inheritance. Some objects derive attributes and
behaviors from other objects

Encapsulation. Combining data and methods
together

Object Oriented Paradigm: Features

8

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Java C#

Java’s OO Features

9

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

C++

Encapsulation

 It associates the code

and the data it

manipulates into a single

unit; and keeps them

safe from external

interference and misuse.

10

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Data

Functions

Data Abstraction

 The technique of
creating new data types
that are well suited to an
application.

 It allows the creation of
user defined data types,
having the properties of
built data types and a set
of permitted operators.

 In Java, partial support.

 In C++, fully supported
(e.g., operator
overloading).

11

OOP
Paradigm

Encapsulation

Multiple Inheritance

Genericity

Delegation

Persistence

Polymorphism

Single Inheritance

Data Abstraction

Abstract Data Type (ADT)

A structure that contains both data

and the actions to be performed on

that data.

Class is an implementation of an

Abstract Data Type.

12

Class- Example

13

class Account {
 private String accountName;
 private double accountBalance;

 public withdraw();
 public deposit();
 public determineBalance();
} // Class Account

Class

 Class is a set of attributes and operations that

are performed on the attributes.

14

Account

accountName
accountBalance

withdraw()
deposit()
determineBalance()

Student

name
age
studentId

getName()
getId()

Circle

centre
radius

area()
circumference()

Objects

 An Object Oriented system is a

collection of interacting Objects.

 Object is an instance of a class.

15

What are Objects?

Introduction to objects

Anything tangible or abstract that

is relevent

Objects can have attributes and

behaviors

Attributes describe the object

Behaviors describe what the object

can do

Classification of objects

User Interface objects

◦ Objects that the user interacts directly
with

Operating environment objects

◦ Provide services to other components

Task Related objects

◦ Documents, multimedia, problem
domain

Classes/Objects

18

Student
:John

:Jill

John and Jill are
objects of class

Student

Circle
:circleA

:circleB

circleA and circleB
are

objects of class
Circle

Class

 A class represents a template for several

objects that have common properties.

 A class defines all the properties common

to the object - attributes and methods.

 A class is sometimes called the object’s

type.

19

Object

 Objects have state and classes don’t.
John is an object (instance) of class Student.

name = “John”, age = 20, studentId = 1236

Jill is an object (instance) of class Student.
name = “Jill”, age = 22, studentId = 2345

circleA is an object (instance) of class Circle.
centre = (20,10), radius = 25

circleB is an object (instance) of class Circle.
centre = (0,0), radius = 10

20

Encapsulation

 All information (attributes and methods) in an
object oriented system are stored within the
object/class.

 Information can be manipulated through
operations performed on the object/class –
interface to the class. Implementation is hidden
from the user.

 Object support Information Hiding – Some
attributes and methods can be hidden from the
user.

21

Encapsulation

 To hide the details, package together

 Access modifiers – public, private and

protected

Encapsulation - Example

23

class Account {
 private String accountName;
 private double accountBalance;

 public withdraw();
 public deposit();
 public determineBalance();
} // Class Account

Deposit

Withdraw

Determine Balance

Account
balance

messag
e

message

message

Data Abstraction

 The technique of creating new data types

that are well suited to an application.

 It allows the creation of user defined data

types, having the properties of built in

data types and more.

24

Abstraction - Example

25

class Account {

 private String accountName;

 private double accountBalance;

 public withdraw();

 public deposit();

 public determineBalance();

} // Class Account

 Creates a data
 type Account

Account acctX;

Inheritance

 New data types (classes) can be defined

as extensions to previously defined types.

 Parent Class (Super Class) – Child Class

(Sub Class)

 Subclass inherits properties from the

parent class.

26

Parent

Child

Inherited
capability

Inheritance - Example

 Example
◦ Define Person to be a class
 A Person has attributes, such as age, height, gender
 Assign values to attributes when describing object

◦ Define student to be a subclass of Person
 A student has all attributes of Person, plus attributes

of his/her own (student no, course_enrolled)
 A student has all attributes of Person, plus attributes

of his/her own (student no, course_enrolled)
 A student inherits all attributes of Person

◦ Define lecturer to be a subclass of Person
 Lecturer has all attributes of Person, plus attributes

of his/her own (staff_id, subjectID1, subjectID2)

27

Uses of Inheritance – Multiple Inheritance

 Inherit properties from more than one class.

 This is called Multiple Inheritance.

28

Shape

Circle

Graphics

Polymorphism

 Polymorphic which means “many forms” has
Greek roots.
◦ Poly – many

◦ Morphos - forms.

 In OO paradigm polymorphism has many forms.

 Allow a single object, method, operator associated
with different meaning depending on the type of
data passed to it.

29

Persistence

 The phenomenon where the object outlives
the program execution.

 Databases support this feature.

 In Java, this can be supported if users explicitly
build object persistency using IO streams.

30

Why OOP?

 Greater Reliability

◦ Break complex software projects into small,

self-contained, and modular objects

 Maintainability

◦ Modular objects make locating bugs easier,

with less impact on the overall project

 Greater Productivity through Reuse!

 Faster Design and Modelling

31

Benefits of OOP..

 Inheritance: Elimination of Redundant Code
and extend the use of existing classes.

 Build programs from existing working modules,
rather than having to start from scratch.
save development time and get higher
productivity.

 Encapsulation: Helps in building secure
programs.

32

Benefits of OOP..

 Multiple objects to coexist without any
interference.

 Easy to map objects in problem domain to
those objects in the program.

 It is easy to partition the work in a project
based on objects.

 The Data-Centered Design enables us in
capturing more details of model in an
implementable form.

33

Benefits of OOP..

 Object Oriented Systems can be easily

upgraded from small to large systems.

 Message-Passing technique for communication

between objects make the interface

descriptions with external systems much

simpler.

 Software complexity can be easily managed.

34

Summary

 Object Oriented Design, Analysis, and
Programming is a Powerful paradigm

 Enables Easy Mapping of Real world Objects to
Objects in the Program

 This is enabled by OO features:
◦ Encapsulation

◦ Data Abstraction

◦ Inheritance

◦ Polymorphism

◦ Persistence

 Standard OO Design (UML) and Programming
Languages (C++/Java) are readily accessible.

35

References

 Robert Grimm, G22.2110-001 Programming

Languages, NYU's Computer Science

Department

 Prof. Saman Amarasinghe”, Prof. Martin Rinard,

MIT Course 6.035 Computer Language

Engineering

 “Programming with Java” by Balagurusamny,

TMH, New Delhi, India.

 “Mastering C++” by V. Rajuk and R. Buyya, Tata

McGraw Hill, New Delhi, India.

36

