Lecture 2:
Creating and Destroying Objects

Constructor

e Constructor function

o Special member function
Initializes data members

Same name as class
> Called when object instantiated

o Several constructors

Function overloading

> No return type

Rules for making

d

constructor (C++)

A constructor must have the same name as the

C
N\
N\

N\

ass.
o return type; not even void.

o return statement.

ever call a constructor manually. The

execution process takes care of that.

Never declare constructor as virtual or static,
const, volatile, or const volatile.

References and pointers cannot be used on
constructors and destructors because their
addresses cannot be taken.

Initializing Class Obijects:
Constructors

e |nitializers
° Passed as arguments to constructor

° In parentheses to right of class name before semicolon

Class-type ObjectName (
valuel,valueZ2,..),

Default constructors

A default constructor is a constructor that
either has no parameters, orif it has
parameters, all the parameters have default
values.

* No explicit constructor declaration => the
compiler assumes the class to have a default
constructor with no arguments.

'1 Let moving to C++

*Let's recode the previous, now using classes:

class XY §
\1 public:
double x;
double y;
$i

User-defined type (named in OOP — class) Is a declaration of
data used when type is instantiated in an object, and set
of operatlon needed for object manipulation

e Declaration of an object:
XY alfa; //anuninitialized object
alfa.x = 2.0;
alfa.y =3.0;

iﬁ
‘ Constructors

e inafunction we construct the declared object:

| void f()f
XY bottomRight;
/| construction: in stack, x andy - uninitialized

5

e Don’t call default constructors as function — it
seams like a call to forward declared function,

returning XY:
XY bottomRight();

i’
A Constructors

e Constructors can have multiple parameters:
example with taking 2 parameters:

class XY §
public:
double x,y;
XY(double a, double b) { x=a; y =b;}
7

|« Now —declaring object:
XY bottomRight(s.0, 7.0);

‘ Constructors

e [t's possible to have more than 1 constructorsin a

class:
class XY §
public:
double x,y;
XY()f
X =0.0;
y =1.0;

}
XY(double a, double b;) {x=a; y =b;}

5

e Reference to a constructor:
XY mytop;
XY secondtop(2.0, 2.0);

e The constructor can not be declared as virtual or
friend

e Object of a class type must be initialized.
e If a default constructor is present, it is called
e If not —a suitable constructor of the object is called
e If not a default constructor is produced by the
| compiler

e An object can be member of a complex object if:
e Object’s class possesses constructor without
parameters;

e Object’s class does not possess constructor;

e [f the complex object has a constructor
including values for initializing his member-
object. So, a constructor of the member is called
in the time the parent is constructed.

Example

class CBox

{ [/ ...

//Constructor definition
CRox (double 1lv = 1.0,

double bv = 1.0, double hv = 1.0)

cout << endl << “Constructor
called.”;

m Length = 1lv; // Set values of
m Width = bv; // data members
m Height = hv;

Example

// Constructor definition using an
//initialization list
CBox (double 1v = 1.0,

double bv = 1.0, double hv = 1.0):

m Length(lv), m Width (bv),
m Height (hv)

cout << endl << “Constructor
called.”;

J

Example 1/2

/{ Ex7_07.cpp

// A class with private members
#include <iostream:>

using std::cout;

using std::endl;

class CBox ff Class definition at global scope

{
public:

// Constructor definition using an initialisation list
CBox(double 1v = 1.0, double bv = 1.0, double hv = 1.0):

m_Length (1v), m Width(bwv), m_Height (hv)
{

cout =< endl << "Constructor called.”;:

}

// Function to calculate the volume of a box
double Volume ()

{
return m_Length*m_Width*m Height;
1

private:
double m_Length; f// Length of a box in inches
double m_Width; f/ Width of a box in inches
double m_Height; // Height of a box in inches
}i
int maini()
{
CBox match(2.2, 1.1, 0.58); /J/ Declare match box
CBox box2; /{ Declare box2 - no initial wvalues

cout << endl
<< "Volume of match =
<< match.Volume/();

/f Uncomment the following line to get an error
S/ box2.m _Length = 4.0;

cout << endl
<< "Volume of box2 =
<< box2 . Volume();

cout << andl;
return 0;

Constructor
Destructor

&D | =D

MyClass *MyohjPtr = new MyClass (): delete MyobjPtr:

» The code for the actual construction or
destruction of an object is added on by the
compiler and you do not see it.

Destructors

e Destructors
> Same name as class
Preceded with tilde (~)
> No arguments
> Cannot be overloaded

o Performs “termination housekeeping”

v
Destructors

~ ® |naclass, we can have no more than 1 destructor.
e He seams like a function with ~
| He take no arguments and return noting

e Heis automatically called for any stack or global
object, when that object goes out of scope.

class XY §
public:
double x,y;
XY(); // default constructor

XY(double a, double b);
~XY(); // destructor

§;

o
Destructors

* If you don't write a destructor, the compiler
generates a default for you.

e For data members, that are C++ objects, the
default destructor calls those object’s
destructors.

e When destructing, the compiler releases the
storage, occupied by that object

1 Destructors - examples

XY::XY()
{
printf("default constructor called\n");

: X=y=0.0,
- ;

XY::XY(double a, double b)
{

printf(" second explicit constructor called\n");
x=a;y=b;

$

XY::~XY()

{
printf("destructor called\n");

$

C++/CLI

e value class

value class Height

{

&

» ref class - This creates a reference type
managed by the CLR.

ref class Height

{

&

value class

// Class representing a height
value class Height
{
private:
// Records the height in feet and inches
int feet;
int inches;
public:
// Create a height from inches value
Helight (int 1ns)
{
feet = ins/12;
inches = 1ins%12;
}
// Create a height from feet and inches

Height (int ft, int 1ins) : feet (ft),
inches (ins) {}

|

int main (array<System::String *> "args)

{

Height myHeight = Height (6,3);
Height” yourHeight = Height (70);
Height hisHeight = *yourHeight;

Console::WritelLine (L”My height is {0}”,
myHeight) ;

Console::WritelLine(L”Your height is {0}”,
yourHeight) ;

Console::WritelLine (L”His height is {0}”,
hisHeight) ;

return 0O;

ref class Box
{
public:
Box () : Length(1.0), Width(1.0), Height (1.0)
{

Console::WritelLine (L”No-arg constructor
called.”);

}
Box (double 1lv, double bv, double hv):

Length (1lv), Width(bv), Height (hv)
{

Console: :Writeline (L”Constructor
called.”);

}
double Volume ()

{
return Length*Width*Height;

}

private:
double Length; // Length of a box in inches

double Width; // Width of a box in inches
double Height; // Height of a box in inches

s

int main (array<System::String *> "args)

{

Box” aBox; // Handle of type Box"

Box” newBox = gcnew Box (10, 15, 20);

aBox = gcnew Box; // Initialize with default
Box

Console::WritelLine (L”Default box volume 1s
{0}, aBox—->Volume ())

Console::Writeline (L”New box volume 1is {0}”,
newBox->Volume ()) ;

return 0;

‘ First real example 1/2

' using namespace System;
- _gc class animal
| {
public:
int legs;

void SetName(String *Name) { strName =
strName->Copy(Name); };

String* GetName() { return strName; };
private:

String *strName;

3

//This is the entry point for this application

int _tmain(void)

{ Cat = new animal;

Dog = new animal;

Cat->SetName("Cat"),

Cat->legs = 4;

Dog->SetName("Dog");

Dog->legs = 4;

Console::
Console::
Console::
Console::

Console::

return o;

$

Write("Name ");
WriteLine(Cat->GetName());
Write("Legs ");
WriteLine(Cat->legs);
WriteLine();

Using Private Constructors

* A private constructor prevents unwanted
objects from being created

o Instance methods cannot be called
o Static methods can be called

> A useful way of implementing procedural
functions

?ub11c class Math
public static double Cos(double x) { ... }
public static double Sin(double x) { ... }
) private Math() { }

Factory method pattern

» The factory method pattern is an object-
oriented creational design pattern to
implement the concept of factories and deals
with the problem of creating objects (products)
without specifying the exact class of object
that will be created.

» Define an interface for creating an object, but
let the classes that implement the interface
decide which class to instantiate. The Factory
method lets a class defer instantiation to
subclasses.

Example

public clas=s Complex

{
public donble real;
public double imaginary;

public =tatic Complex FromCartesianFactory (double real, donble imaginary)
i

retorn new Complex(real, imaginary):

public static Complex FromPolarFactory (douoble modulus
{

, double angle)

return new Conplex (modulus * Math.Cos(angle), modulus * Math.S5in(angle)) :

private Complex (double real, double imaginary)
{

thi=.real = real:;
this.imaginary = imaginary;

Complex product = Complex.FromPolarFactory(l,pil):;

Using Static Constructors

e Purpose
> Called by the class loader at run time
o Can be used to initialize static fields

o Guaranteed to be called before instance
constructor

e Restrictions
o Cannot be called
o Cannot have an access modifier

> Must be parameterless

