
Lecture 2:

Creating and Destroying Objects

2

Constructor

 Constructor function

◦ Special member function

 Initializes data members

 Same name as class

◦ Called when object instantiated

◦ Several constructors

 Function overloading

◦ No return type

Rules for making
a constructor (C++)

 A constructor must have the same name as the
class.

 No return type; not even void.

 No return statement.

 Never call a constructor manually. The
execution process takes care of that.

 Never declare constructor as virtual or static,
const, volatile, or const volatile.

 References and pointers cannot be used on
constructors and destructors because their
addresses cannot be taken.

4

Initializing Class Objects:

Constructors

 Initializers

◦ Passed as arguments to constructor

◦ In parentheses to right of class name before semicolon

Class-type ObjectName(

value1,value2,…);

Default constructors

 A default constructor is a constructor that
either has no parameters, or if it has
parameters, all the parameters have default
values.

 No explicit constructor declaration => the
compiler assumes the class to have a default
constructor with no arguments.

Let moving to C++

 *Let’s recode the previous, now using classes:
 class XY {
 public:
 double x;
 double y;
 };
User-defined type (named in OOP – class) is a declaration of

data, used when type is instantiated in an object, and set
of operation needed for object manipulation

• Declaration of an object:
 XY alfa; // an uninitialized object
 alfa.x = 2.0;
 alfa.y = 3.0;

• in a function we construct the declared object:
void f(){
 XY bottomRight;
 // construction: in stack, x and y - uninitialized
}

• Don’t call default constructors as function – it

seams like a call to forward declared function,
returning XY:

 XY bottomRight();

Constructors

8

• Constructors can have multiple parameters:
example with taking 2 parameters:

 class XY {
 public:
 double x,y;
 XY(double a, double b) { x=a; y =b;}
 };

• Now – declaring object:
 XY bottomRight(5.0, 7.0);

Constructors

• It’s possible to have more than 1 constructors in a
class:

class XY {
 public:
 double x,y;
 XY(){
 x = 0.0;
 y = 1.0;
 }
 XY(double a, double b;) {x =a; y =b;}
};

• Reference to a constructor:
 XY mytop;
 XY secondtop(2.0, 2.0);
• The constructor can not be declared as virtual or

friend

Constructors

• Object of a class type must be initialized.
• If a default constructor is present, it is called
• If not – a suitable constructor of the object is called
• If not a default constructor is produced by the
compiler

• An object can be member of a complex object if:

• Object’s class possesses constructor without
parameters;
• Object’s class does not possess constructor;
• If the complex object has a constructor
including values for initializing his member-
object. So, a constructor of the member is called
in the time the parent is constructed.

Example

class CBox

{ // ….

 //Constructor definition

 CBox(double lv = 1.0,

 double bv = 1.0, double hv = 1.0)

{

 cout << endl << “Constructor
called.”;

 m_Length = lv; // Set values of

 m_Width = bv; // data members

 m_Height = hv;

}

};

Example

// Constructor definition using an

//initialization list

CBox(double lv = 1.0,

 double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Width(bv),

 m_Height(hv)

{

 cout << endl << “Constructor

called.”;

}

Example 1/2

Example 2/2

 The code for the actual construction or
destruction of an object is added on by the
compiler and you do not see it.

16

Destructors

 Destructors

◦ Same name as class

 Preceded with tilde (~)

◦ No arguments

◦ Cannot be overloaded

◦ Performs “termination housekeeping”

Destructors

• In a class, we can have no more than 1 destructor.
• He seams like a function with ~
• He take no arguments and return noting
• He is automatically called for any stack or global

object, when that object goes out of scope.

class XY {
 public:
 double x,y;
 XY(); // default constructor
 XY(double a, double b);
 ~XY(); // destructor
};

18

• If you don’t write a destructor, the compiler

generates a default for you.
• For data members, that are C++ objects, the

default destructor calls those object’s
destructors.

• When destructing, the compiler releases the
storage, occupied by that object

Destructors

Destructors - examples
XY::XY()
{
 printf("default constructor called\n");
 x=y=0.0;
}

XY::XY(double a, double b)
{
 printf(" second explicit constructor called\n");
 x = a; y = b;
}

XY::~XY()
{
 printf("destructor called\n");
}

C++/CLI

 value class

 ref class - This creates a reference type

managed by the CLR.

value class Height

{

};

ref class Height

{

};

value class
// Class representing a height

value class Height

{

private:

 // Records the height in feet and inches

 int feet;

 int inches;

public:

 // Create a height from inches value

 Height(int ins)

 {

 feet = ins/12;

 inches = ins%12;

 }

// Create a height from feet and inches

Height(int ft, int ins) : feet(ft),
inches(ins){}

};

int main(array<System::String ^> ^args)

{

Height myHeight = Height(6,3);

Height^ yourHeight = Height(70);

Height hisHeight = *yourHeight;

Console::WriteLine(L”My height is {0}”,

myHeight);

Console::WriteLine(L”Your height is {0}”,

yourHeight);

Console::WriteLine(L”His height is {0}”,

hisHeight);

return 0;

}

ref class Box

{

public:

 Box(): Length(1.0), Width(1.0), Height(1.0)

 {

 Console::WriteLine(L”No-arg constructor
called.”);

 }

 Box(double lv, double bv, double hv):

 Length(lv), Width(bv), Height(hv)

 {

 Console::WriteLine(L”Constructor
called.”);

 }

 double Volume()

 {

 return Length*Width*Height;

 }

 private:

 double Length; // Length of a box in inches

 double Width; // Width of a box in inches

 double Height; // Height of a box in inches

};

int main(array<System::String ^> ^args)

{

Box^ aBox; // Handle of type Box^

Box^ newBox = gcnew Box(10, 15, 20);

aBox = gcnew Box; // Initialize with default

Box

Console::WriteLine(L”Default box volume is

{0}”, aBox->Volume());

Console::WriteLine(L”New box volume is {0}”,

newBox->Volume());

return 0;

}

First real example 1/2

using namespace System;

__gc class animal

{

public:

 int legs;

 void SetName(String *Name) { strName =
strName->Copy(Name); };

 String* GetName() { return strName; };

private:

 String *strName;

};

F
ir
st

 r
e
a
l
e
x
a
m

p
le

 –
 2

/2

// This is the entry point for this application

int _tmain(void)

{ Cat = new animal;

 Dog = new animal;

 Cat->SetName("Cat");

 Cat->legs = 4;

 Dog->SetName("Dog");

 Dog->legs = 4;

 Console::Write("Name ");

 Console::WriteLine(Cat->GetName());

 Console::Write("Legs ");

 Console::WriteLine(Cat->legs);

 Console::WriteLine();

return 0;

}

Using Private Constructors

 A private constructor prevents unwanted

objects from being created

◦ Instance methods cannot be called

◦ Static methods can be called

◦ A useful way of implementing procedural

functions

public class Math

{

 public static double Cos(double x) { ... }

 public static double Sin(double x) { ... }

 private Math() { }

}

Factory method pattern

 The factory method pattern is an object-
oriented creational design pattern to
implement the concept of factories and deals
with the problem of creating objects (products)
without specifying the exact class of object
that will be created.

 Define an interface for creating an object, but
let the classes that implement the interface
decide which class to instantiate. The Factory
method lets a class defer instantiation to
subclasses.

28

Example

29

Using Static Constructors

 Purpose

◦ Called by the class loader at run time

◦ Can be used to initialize static fields

◦ Guaranteed to be called before instance

constructor

 Restrictions

◦ Cannot be called

◦ Cannot have an access modifier

◦ Must be parameterless

