
Lecture 2:

Creating and Destroying Objects

2

Constructor

 Constructor function

◦ Special member function

 Initializes data members

 Same name as class

◦ Called when object instantiated

◦ Several constructors

 Function overloading

◦ No return type

Rules for making
a constructor (C++)

 A constructor must have the same name as the
class.

 No return type; not even void.

 No return statement.

 Never call a constructor manually. The
execution process takes care of that.

 Never declare constructor as virtual or static,
const, volatile, or const volatile.

 References and pointers cannot be used on
constructors and destructors because their
addresses cannot be taken.

4

Initializing Class Objects:

Constructors

 Initializers

◦ Passed as arguments to constructor

◦ In parentheses to right of class name before semicolon

Class-type ObjectName(

value1,value2,…);

Default constructors

 A default constructor is a constructor that
either has no parameters, or if it has
parameters, all the parameters have default
values.

 No explicit constructor declaration => the
compiler assumes the class to have a default
constructor with no arguments.

Let moving to C++

 *Let’s recode the previous, now using classes:
 class XY {
 public:
 double x;
 double y;
 };
User-defined type (named in OOP – class) is a declaration of

data, used when type is instantiated in an object, and set
of operation needed for object manipulation

• Declaration of an object:
 XY alfa; // an uninitialized object
 alfa.x = 2.0;
 alfa.y = 3.0;

• in a function we construct the declared object:
void f(){
 XY bottomRight;
 // construction: in stack, x and y - uninitialized
}

• Don’t call default constructors as function – it

seams like a call to forward declared function,
returning XY:

 XY bottomRight();

Constructors

8

• Constructors can have multiple parameters:
example with taking 2 parameters:

 class XY {
 public:
 double x,y;
 XY(double a, double b) { x=a; y =b;}
 };

• Now – declaring object:
 XY bottomRight(5.0, 7.0);

Constructors

• It’s possible to have more than 1 constructors in a
class:

class XY {
 public:
 double x,y;
 XY(){
 x = 0.0;
 y = 1.0;
 }
 XY(double a, double b;) {x =a; y =b;}
};

• Reference to a constructor:
 XY mytop;
 XY secondtop(2.0, 2.0);
• The constructor can not be declared as virtual or

friend

Constructors

• Object of a class type must be initialized.
• If a default constructor is present, it is called
• If not – a suitable constructor of the object is called
• If not a default constructor is produced by the
compiler

• An object can be member of a complex object if:

• Object’s class possesses constructor without
parameters;
• Object’s class does not possess constructor;
• If the complex object has a constructor
including values for initializing his member-
object. So, a constructor of the member is called
in the time the parent is constructed.

Example

class CBox

{ // ….

 //Constructor definition

 CBox(double lv = 1.0,

 double bv = 1.0, double hv = 1.0)

{

 cout << endl << “Constructor
called.”;

 m_Length = lv; // Set values of

 m_Width = bv; // data members

 m_Height = hv;

}

};

Example

// Constructor definition using an

//initialization list

CBox(double lv = 1.0,

 double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Width(bv),

 m_Height(hv)

{

 cout << endl << “Constructor

called.”;

}

Example 1/2

Example 2/2

 The code for the actual construction or
destruction of an object is added on by the
compiler and you do not see it.

16

Destructors

 Destructors

◦ Same name as class

 Preceded with tilde (~)

◦ No arguments

◦ Cannot be overloaded

◦ Performs “termination housekeeping”

Destructors

• In a class, we can have no more than 1 destructor.
• He seams like a function with ~
• He take no arguments and return noting
• He is automatically called for any stack or global

object, when that object goes out of scope.

class XY {
 public:
 double x,y;
 XY(); // default constructor
 XY(double a, double b);
 ~XY(); // destructor
};

18

• If you don’t write a destructor, the compiler

generates a default for you.
• For data members, that are C++ objects, the

default destructor calls those object’s
destructors.

• When destructing, the compiler releases the
storage, occupied by that object

Destructors

Destructors - examples
XY::XY()
{
 printf("default constructor called\n");
 x=y=0.0;
}

XY::XY(double a, double b)
{
 printf(" second explicit constructor called\n");
 x = a; y = b;
}

XY::~XY()
{
 printf("destructor called\n");
}

C++/CLI

 value class

 ref class - This creates a reference type

managed by the CLR.

value class Height

{

};

ref class Height

{

};

value class
// Class representing a height

value class Height

{

private:

 // Records the height in feet and inches

 int feet;

 int inches;

public:

 // Create a height from inches value

 Height(int ins)

 {

 feet = ins/12;

 inches = ins%12;

 }

// Create a height from feet and inches

Height(int ft, int ins) : feet(ft),
inches(ins){}

};

int main(array<System::String ^> ^args)

{

Height myHeight = Height(6,3);

Height^ yourHeight = Height(70);

Height hisHeight = *yourHeight;

Console::WriteLine(L”My height is {0}”,

myHeight);

Console::WriteLine(L”Your height is {0}”,

yourHeight);

Console::WriteLine(L”His height is {0}”,

hisHeight);

return 0;

}

ref class Box

{

public:

 Box(): Length(1.0), Width(1.0), Height(1.0)

 {

 Console::WriteLine(L”No-arg constructor
called.”);

 }

 Box(double lv, double bv, double hv):

 Length(lv), Width(bv), Height(hv)

 {

 Console::WriteLine(L”Constructor
called.”);

 }

 double Volume()

 {

 return Length*Width*Height;

 }

 private:

 double Length; // Length of a box in inches

 double Width; // Width of a box in inches

 double Height; // Height of a box in inches

};

int main(array<System::String ^> ^args)

{

Box^ aBox; // Handle of type Box^

Box^ newBox = gcnew Box(10, 15, 20);

aBox = gcnew Box; // Initialize with default

Box

Console::WriteLine(L”Default box volume is

{0}”, aBox->Volume());

Console::WriteLine(L”New box volume is {0}”,

newBox->Volume());

return 0;

}

First real example 1/2

using namespace System;

__gc class animal

{

public:

 int legs;

 void SetName(String *Name) { strName =
strName->Copy(Name); };

 String* GetName() { return strName; };

private:

 String *strName;

};

F
ir
st

 r
e
a
l
e
x
a
m

p
le

 –
 2

/2

// This is the entry point for this application

int _tmain(void)

{ Cat = new animal;

 Dog = new animal;

 Cat->SetName("Cat");

 Cat->legs = 4;

 Dog->SetName("Dog");

 Dog->legs = 4;

 Console::Write("Name ");

 Console::WriteLine(Cat->GetName());

 Console::Write("Legs ");

 Console::WriteLine(Cat->legs);

 Console::WriteLine();

return 0;

}

Using Private Constructors

 A private constructor prevents unwanted

objects from being created

◦ Instance methods cannot be called

◦ Static methods can be called

◦ A useful way of implementing procedural

functions

public class Math

{

 public static double Cos(double x) { ... }

 public static double Sin(double x) { ... }

 private Math() { }

}

Factory method pattern

 The factory method pattern is an object-
oriented creational design pattern to
implement the concept of factories and deals
with the problem of creating objects (products)
without specifying the exact class of object
that will be created.

 Define an interface for creating an object, but
let the classes that implement the interface
decide which class to instantiate. The Factory
method lets a class defer instantiation to
subclasses.

28

Example

29

Using Static Constructors

 Purpose

◦ Called by the class loader at run time

◦ Can be used to initialize static fields

◦ Guaranteed to be called before instance

constructor

 Restrictions

◦ Cannot be called

◦ Cannot have an access modifier

◦ Must be parameterless

