
Static class members 
New  

them 

• ‘static’ means - associated with  a class, rather than with any specific 
object of that class; 

• Static data members: 

 class Orbiter { 

  protected: 

   double m_mass; 

   XY m_current, m_prior, m_thrust; 

  public: 

   static int nCount; //only 1 copy of nCount exists 

   … 

  }; 

• you must declare global definition code to initialize static data: 

 int Orbiter::nCount = 0; 

• if declared public the data member can be used like this: 

 Orbiter::nCount++;  

• if declared as const static, the data member can  be still initialized single 
time only;  



static member-functions 

• if static data member is private, you  would need a public, static member function  to work 
with it 

• another use of static member functions is in constructions. Suppose  you need to 
construct a new orbiting object, but you don’t know until run time witch derived Orbiter 
class you want: 

 

static Orbiter* Orbiter::MakeNew(int select , XY& current, XY& prior, double mass, 

     XY& thrust, xY& orientation, Planet* pPlanet) 

{ 

 switch (select){ 

 case 0: 

  return new Planet(current, prior, mass); 

 case 1: 

  return new SpaceShip(current, prior, thrust, mass, orientation); 

 case 2: 

  return new Moon(current, prior, mass, pPlanet); 

 default: 

  return NULL; 

 } 

}  



Operator Overloading 

New  

them 

•What operator overloading is? 

•Which classes must support operator overloading 

• What you can and can’t overload 

•How to implement operator overloads 

 



What operator overloading is? 

 
You can redefine the function of most built-in operators globally or on a class-by-class basis.  

Overloaded operators are implemented as functions.The name of an overloaded operator is  

‘operatorx’, where ‘x’ is the operator.  

For example, to overload the addition operator, you define a function called operator+.  
Similarly, to overload the addition/assignment operator ‘+=‘ -  define a function called operator+=. 

 

Operators, provided by C++ work only with built-in types. Not with your own data types. 

The compiler doesn’t know how to apply operator (like +, == …) to your types. 

 

If you want not to write: 

 

Object3 = object1.Add(object2); 

 

But instead: 

 

Object3 = object1 + object2; 

 

You have to overload operator ‘+’ 

 

So is with complex data type like:  Date, String,…. 

And with 

    OBJECTS 

  like operation: 

  MyBankAccount == youBankAccount; 

 

All Traditional operations can be overloaded. 

Not possible to overload  some esoteric operations like sizeof or ‘.’ 

In managed C++ is not possible to overload  , (), [] 



Rules of overloading 

 
•You can  have no new operators! 

 

•You can’t change the number of operands, taken by an operator; 

 

•You can’t change the precedence or associativity of operators’! 

For example * will always take precedence over +, regardless you will. 

 

 

 

 

Overloading operators in managed types 

 
CLS defines a list of operators that .NET languages can support. 

That means, when you override operator in a managed C++ type, you don’t override the  

C++ operator, but instead override the underlying CLS functionality. 

The compiler distinguishes between the different meanings of an operator by  

examining the types of its operands. 

The syntax is: 

 

type operator::operator-symbol ( parameter-list ) 



having:  class ostream{ 

   ….. 

   ostream operator<<(char*); 

   } 

  ostream ostream::operator<<(char*) 

   {while (*p) buf.sputc(*p++); 

      return *this; } 

 

we in fact have a definition of operator <<  as a member of ostream class. This done, the 

following is possible: 

  s<<p 

In fact it’s interpreted as: 

  s.operator<<(p); 

   where ‘s’ is of type ostream and ‘p’ is char*. 

 

Operator << is a binary operation!! The syntax  

  operator<<(char*)  

is looking as 1 parameter operation. Please. Have in mind - this is a second parameter. 

 

Operation ‘<<‘ is returning a ostream type. So, the syntax of type: 

  s << p << q 

Is a possible syntax, equivalent of: 

  (s.operator<<(p)).operator<<(q) 

What operator overloading is in fact? 



struct Complex {  

 Complex( double r, double i ) : re(r), im(i) {}  

 Complex operator+( Complex &other );  

 

 void Display( )  

  { cout << re << ", " << im << endl; }  

 

private:  

 double re, im;  

           }; 

 

 // Operator overloaded using a member function  

Complex Complex::operator+( Complex &other ) 

  { return Complex( re + other.re, im + other.im ); }  

 

int main()  

{  

 Complex a = Complex( 1.2, 3.4 );  

 Complex b = Complex( 5.6, 7.8 );  

 Complex c = Complex( 0.0, 0.0 );  

 c = a + b;  

 c.Display();  

}  

Overloading arithmetic operators 



Overloading arithmetic operators- full example 1/3 

// The FeetInches class holds distances or measurements  expressed in feet and inches. 

 

class FeetInches 

{private: 

   int feet;           // To hold a number of feet 

   int inches;         // To hold a number of inches 

   void simplify();    // Defined in FeetInches.cpp 

public: 

   // Constructor 

   FeetInches(int f = 0, int i = 0) 

      { feet = f; 

        inches = i; 

        simplify(); } 

 

   // Mutator functions 

   void setFeet(int f)       { feet = f; } 

 

   void setInches(int i) 

      { inches = i; 

        simplify(); } 

 

   // Accessor functions 

   int getFeet() const       { return feet; } 

 

   int getInches() const       { return inches; } 

 

   // Overloaded operator functions 

   FeetInches operator + (const FeetInches &);  // Overloaded + 

   FeetInches operator - (const FeetInches &);  // Overloaded – 

   FeetInches operator ++ ();  // Prefix ++ 

   FeetInches operator ++ (int);  // Postfix ++ 

}; 

.h 



Overloading arithmetic operators- full example  2/3  

// Implementation file for the FeetInches class 

#include "FeetInches.h" 

// Definition of member function simplify(). This function     * 

// checks for values in the inches member greater than       * 

// twelve or less than zero. If such a value is found,       * 

// the numbers in feet and inches are adjusted to conform    * 

// to a standard feet&inches expression. For example,      * 

// 3 feet 14 inches would be adjusted to 4 feet 2 inches and * 

// 5 feet -2 inches would be adjusted to 4 feet 10 inches.   * 

void FeetInches::simplify() 

{   if (inches >= 12)    { 

      feet += (inches / 12); 

      inches = inches % 12;   } 

   else if (inches < 0) 

   {      feet -= ((abs(inches) / 12) + 1); 

      inches = 12 - (abs(inches) % 12);   } 

} 

// Overloaded binary + operator.               * 

FeetInches FeetInches::operator + (const FeetInches &right) 

{   FeetInches temp; 

   temp.inches = inches + right.inches; 

   temp.feet = feet + right.feet; 

   temp.simplify(); 

   return temp; 

} 

// Overloaded binary - operator.               * 

FeetInches FeetInches::operator - (const FeetInches &right) 

{   FeetInches temp; 

 

   temp.inches = inches - right.inches; 

   temp.feet = feet - right.feet; 

   temp.simplify();   

   return temp;} 

.cpp 



Overloading arithmetic operators- full example 3/3 

//************************************************************* 

// Overloaded prefix ++ operator. Causes the inches member to * 

// be incremented. Returns the incremented object.            * 

//affect only the object, so – no need for a parameter ! 

//************************************************************* 

 

FeetInches FeetInches::operator++() 

{ 

 ++inches; 

 simplify(); 

 return *this; 

} 

 

//*************************************************************** 

// Overloaded postfix ++ operator. Causes the inches member to  * 

// be incremented. Returns the value of the object before the   * 

// increment.                                                   * 

//*************************************************************** 

 

FeetInches FeetInches::operator++(int) 

{ 

 FeetInches temp(feet, inches); 

 

 inches++; 

 simplify(); 

 return temp; 

} 

++ distance; //OK 

or: 

 

distance2 = ++ distance1; //OK 

Is equivalent to: 

 distance2 = distance1.operator++(); 

Dummy parameter.  (nameless) . So the function  

 will be used in postfix mode 

Temporary object – hold the value before increment. 

This value will be returned after. 

So, following is correct: 

 distance2 = distanse1++; 

.cpp 



In first .NET - overloading arithmetic operators (working on value types) 

 

We have the type: 

 

__value struct Dbl 

{ 

 double val; 

Public: 

 Dbl(double v) { val = v;} 

 Double getVal() { return val;} 

} 

 

If you want to implement:  

 

 d3 = d1 + d2;  // for Dbl types 

 

You have to implement +operator. Add the following code to the class definition: 

 

 static Dbl op_Addition(Dbl 1st, Dbl second) 

 { 

 Dbl result(1st.val +second.val); 

 return result; 

 } 

 

 

See the following list 

For CLS functions 



Redefinable Operators 

 

Operator  Name  Type  

,  Comma Binary 

!  Logical NOT Unary 

!=  Inequality Binary 

%  Modulus Binary 

%=  Modulus assignment Binary 

&  Bitwise AND Binary 

&  Address-of Unary 

&&  Logical AND Binary 

&=  Bitwise AND assignment Binary 

( )  Function call — 

( )  Cast Operator Unary 

*  Multiplication Binary 

*  Pointer dereference Unary 

*=  Multiplication assignment Binary 

+  Addition Binary 

+  Unary Plus Unary 

++  Increment1 Unary 

+=  Addition assignment Binary 

Redefinable Operators  



Redefinable Operators  

–  Subtraction Binary 

–  Unary negation Unary 

––  Decrement1 Unary 

–=  Subtraction assignment Binary 

–>  Member selection Binary 

–>*  Pointer-to-member selection Binary 

/  Division Binary 

/=  Division assignment Binary 

<  Less than Binary 

<<  Left shift Binary 

<<=  Left shift assignment Binary 

<=  Less than or equal to Binary 

=  Assignment Binary 

==  Equality Binary 

>  Greater than Binary 

>=  Greater than or equal to Binary 

>>  Right shift Binary 

>>=  Right shift assignment Binary 



Redefinable Operators  

[ ]  Array subscript — 

^  Exclusive OR Binary 

^=  Exclusive OR assignment Binary 

|  Bitwise inclusive OR Binary 

|=  Bitwise inclusive OR assignment Binary 

||  Logical OR Binary 

~  One's complement Unary 

delete  Delete  — 

new  New  — 

conversion operators  conversion operators Unary 



Nonredefinable Operators 

 

Operator  Name  

.  Member selection 

.*  Pointer-to-member selection 

::  Scope resolution 

? :  Conditional 

Although overloaded operators are usually called implicitly by the compiler when 

 they are encountered in code, they can be invoked explicitly the same way as any 

 member or nonmember function is called. 



 .NET  

CLS supports the following functions that can be overloaded: 

 
Operation  C++ equivalent  CLS function name 

 

Decrement --   op_Decrement 

Negate  !   Op_Negetion 

Unary plus +   op_UnaryPlus 

Multiplication *   op_Multiply 

  /   …. 

  - 

  % 

  = 

  == 

  <= 

  > 

  >= 

Logical AND && 

  || 

  << 

  >> 

  & 

  | 

Exclusive OR ^   … 



Operator Overloading (second example 1/2) 

• You must use ‘operator’ keyword (for example: ‘operator+’). This function can be either 
member functions of the type or global functions that are not member of any type. 

 

• many overloaded operators are implemented as class member functions. As an 
example: many times XY objects are used as xy-coordinate pairs and it’s obvious to 
have ‘+’ and ‘–’ operations on them: 

 
XY XY::operator +(const XY& xy) const 

 { 

  return XY(x + xy.x, y + xy.y); 

 } 

 

XY XY::operator -(const XY& xy) const  

 { 

  return XY(x - xy.x, y - xy.y); 

 } 

 

• To use them: 

 

 XY new_xy = xy1 + xy2;    // xy1 and  xy2 are defined as of XY type.  



Operator Overloading  

• other operations with coordinates: 
XY XY::operator -() const {     //unary minus 

 return XY(-x, -y); 

} 

XY operator *(double mult) {     //scalar multiply 

 return XY( s * mult, y * mult); 

} 

const XY&operator *=(const double mult) {    // operation *= 

 x *= mult; 

 y *= mult; 

 return this; 

} 

 

• It’s now possible to code: 
   new_xy = xy1 * 2.7;  

   xy *= 5.0;  

2/2 



 .NET:  Overloading operator functions in managed code 

 
You can also overload the operator functions (mentioned before) also.  

Suppose you want to redefine ‘operator+’ to work not only on 2 Dbl’s operands,  

but on Dbl + int: 

 

D3 = d1 + 5; 

 

You have to override op_Addition function: 

 

static Dbl op_Addition(Dbl first, int second) 

 {  

 Dbl result(first.val + second) 

 return result; 

 } 
And also: 

 

static Dbl op_Addition(int first, Dbl second) 

 {  

 Dbl result(first + second.val) 

 return result; 

 } 

 



 .NET:  Overloading reference types in managed code 

 
 

Reference types are accessed using pointers, which means that the  

arguments for operator functions always have to be pointers: 

 

static MyRef* op_Addition(MyRef * first, MyRef * second) 

 { 

 MyRef * result = new MyRef(first.val + second.val); 

 return result; 

 } 

 

 

 

 

 

 

 

 

 
In first .NET versions we can’t call implicitly overloaded operators on reference types: 

MyRef* r3 = first + second;  //doesn’t work  

 

MyRef* r3 = MyRef::op_Addition(first, second); // but this will work 

  

 // in new .NET version this limitation is removed  



Conversion operators 

New  

them 

• classical automatic conversion: 

int m =3; 

double l = atan(m); // atan expects a double argument, so the compiler converts int 
  //to double before passing it to function 

 

• conversion for own classes: 

 

1. you must write the code yourself to predefine the operation: 

String::operator const char*() const 

{ 

 return (const char*) m_pch; 

} 

2. You can now use a String argument anywhere the compiler expects a const 
char*  

 

• MFC class CString has the same overloaded const char* conversion operator. 
You can use this operator 


