Lecture:

Designing classes

How to write classes in a way that they
are easily understandable, maintainable
and reusable

Software changes

« Software is not like a novel that is written
once and then remains unchanged.

o Software is extended, corrected,
maintained, ported, adapted...

 The work is done by different people over
time (often decades).

OOA, OOD, and OOP

Object-oriented methods may be applied to
different phases in the software life-cycle:

e.g., analysis, design, implementation, etc.

« 00 analysis (OOA) is a process of discovery

Where a development team models and under-
stands the requirements of the system

« 00 design (OOD) is a process of invention and
adaptation

Where the development team creates the
abstractions and mechanisms necessary to meet
the system's behavioral requirements determined
during analysis

Designing classes

A construction company would like to handle a customer's order for a new
home. The customer may select one of four models of a home. Model A for
10000, Model B for 120000, Model C for 180000, or Model D for 250000.
Each model can have one, two, three, or four bedrooms.

Several nouns have been underlined in this description. |dentify the
possible objects that may be defined by this narrative. Not all the nouns
underlined make sense when used as a potential object.

Abstraction and modularization

e Abstraction is the ability to
ignore details of parts to focus
attention on a higher level ot a
problem.

 Modularization is the proc
dividing a whole into well-
defined parts, which can be built
and examined separately, and
which interact in well-defined
ways.

Divide-and-conquer

The Role of Abstraction

» "We (humans) have developed an
exceptionally powerful technique for dealing
with complexity. We abstract from it. Unable to
master the entirety of a complex object, we
choose to ignore its inessential details, dealing
instead with the generalized, idealized model
of the object.” (Wulf)

Role of Decomposition

« When designing a complex software system, it
is essential to decompose it into smaller and
smaller parts, each of which we may then
refine independently.

« divide et impera (divide and rule)

Algorithmic Decomposition

» Decomposition as a simple matter of
algorithmic decomposition, wherein each
module in the system denotes a major step in
some overall process.

Example

Update
file
' ' I ! ' !
Get master Get formatted Match Update Put unmatched Put new
area update master master area
\ /
\ /
Get OK Expand Getvalid | | Reformat Put formatted Format
master care master output
i
A ¥ \- A
Get old master Validate Edit Get sequenced Add Put new
record checksum card checksum master record
Get update Seq
card check

Object-Oriented Decomposition

» Decomposed the system according to the key
abstractions in the problem domain.

» We view the world as a set of autonomous
agents that collaborate to perform some
higher-level behavior.

Example

Update

\.{ Master File

Get Put Create

Master
Record

Get Formatted Update

7___;——;_;_#’

Match

File of
Updates

Get Reformat

Update to

Checksum

Card

Good OO design

* The most important promise of OO is
improve modularization
° that is, enhance maintainability

o while still supporting functional
decomposition (which is good for cohesion)

> while also promoting re-use

* Good OO = high cohesion + low
coupling

M
KauyecTBO Ha KoAaa

2 BaXXHM KOHLENUMM 3a Ka4yecTBo Ha Koaa:
Koxe3nd U CBbp3aHOCT

« CunnHa koxe3uns (Strong Cohesion)
« (Cnaba cebp3aHocT (Loose Coupling)

Coupling

\ .

Couplin_

« Coupling refers to links between separate
units of a program.

* |f two classes depend closely on many
details of each other, we say they are
tightly coupled.

 We aim for loose coupling.

Loose coupling

Loose coupling makes it possible to:

understand one class without reading
others;

change one class without affecting
others.

Thus: improves maintainability.

Cohesion

Cohesion refers to the the number and
diversity of tasks that a single unit is
responsible for.

If each unit is responsible for one single
logical task, we say it has high cohesion.

Cohesion applies to classes and
methods.

We aim for high cohesion.

High cohesion

High cohesion makes it easier to:

* understand what a class or method does;
* use descriptive names;

e reuse classes or methods.

Cohesion

« Of methods: a method should be
responsible for one and only one well
defined task.

« Of Classes: a class should represent one
single, well defined entity.

Code duplication

Code duplication
* |S an indicator of bad design,
 makes maintenance harder,

« can lead to introduction of errors during
maintenance.

Localizing change

 One aim of reducing coupling and
responsibility-driven design is to localize
change.

« WWhen a change is needed, as few
classes as possible should be affected.

R
OCHOBHM BBNpPOCU NpPU
NPoOeKTUupaHeTo

« Konko ronam Tpsibea na e eanH metoAa?
« Konko ronsim tTpsibBa oa eamH Knac?

« MoxeTe nu aa oTroBopmMTE B CMUCHJIA Ha
KOXe3MA N CBbP3aHOCT 2?77

M
Koxe3us

« 3a MeTop: Bcekn eanH metoq TpsibBa Aa e
OTrOBOPEH 3a eflHa N caMOo efiHa Aobpe
neduHupaHa 3apava.

 3a Knacose: Bcekn knac TpsibBa na onmncBea
eanH nobpe neduHUpaH obekT B
npobnemMHaTta obnacr.

R
OCHOBHM BBNpPOCU NpPU
NPoOeKTUupaHeTo

« Konko ronam Tpsibea na e eanH metoAa?
« Konko ronsim tTpsibBa oa eamH Knac?

« MoxeTe nu aa oTroBopmMTE B CMUCHJIA Ha
KOXe3MA N CBbP3aHOCT 2?77

R
NMpMHUUNU Ha NPOEKTUpPaHeTo

 EANMH MeToA e NpeKaneHo ronsaM, KoraTto
M3NbJIHSABA NoBeYye OT e4Ha 3a4ava;

 EAWMH KNac e npekasieHo C/IOXeH, ako Onucea
noBeye OT eHa fiornyecka eanHuMuUm.

M
S. 0. L.1I. D.

* [1pyHUMN Ha eaHO/IMYHATA OTrOBOPHOCT -
Single Responsibility Principle (SRP);
OTBOpeHo-3aTBOpeH npuHumn - Open Closed
Principle (OCP);

 [MpuHuMn Ha cybctutyumarta (JIMckos) -
_iskov’s Substitution Principle (LSP);
 [pMHUMN 33 pa3aensHe Ha UHTepdencnTe -
Interface Segregation Principle (ISP);
[IpnHUMN 3a 06pbllaHe Ha 3aBUCUMMOCTTa-
Dependency Inversion Principle (DIP)).

R
NpuHUMN Ha eAHOJIMYHaTa
OTrOBOPHOCT

* EanH moayn tpsibBa Aa MMa caMo efHa
NpuUynHa Aa ce NpoMeHs.

* TO3M NpUHUMN rNacu, Yye ako nMame ase
Hella Aa ce NMPOMEHNT B eAuH Knac, Tpsibsa
[a ce pa3aensaTt PyHKUMOHANHOCT B [Ba
KJiaca.

« Bcekun Kac e ce cnpasu camMo C eHa
OTFOBOPHOCT U 3a 6bAelle, ako Hue TpsibBa
[la HanpaBuMM efHa NpPOoMsiHa, HUe Lwe ro
HanpaBW B KJlaca, B KOUTO Ce OTHACH.

v

Just because you can, doesn’t mean you should.

SINGLE RESPONSI

Dooan Nea

B1L11

et Becaue e O

http://lostechies.com/derickbailey/files/2011/03/SingleResponsibilityPrinciple2_71060858.jpg

R

single responsibility principle - bad example

public class EmployeeService

{

public void SaveEmployeelnfo(Employee e)
{// To do something}

public void UpdateEmployeelnfo(int empld, Employee e)
{//To do Something

by
public Employee GetEmployeelnfo(int empID)

{// To do something
b

public void MAPEmployee(SqglDatareader reader)
{// To do something

b
¥

R
single responsibility principle - good example

. public class EmployeeService

{
public void SaveEmployeelnfo(Employee e)
{// To do something}
public void UpdateEmployeelnfo(int empld, Employee e)
{//To do Something }
public Employee GetEmployeelnfo(int empID)
{// To do something }
b
public class ExtendEmployeeService extend EmployeeService
{

public void MAPEmployee(SqglDatareader reader)
{// To do something}

M
OTBOpEHO-3aTBOpPEH NPpUHLUN

* EanH Mmoayn Tpsbea Aa 6bae OTBOpPEH 3a
pasLwnpeHne, HO 3aTBOPEH 3a MoandUKaLns.

« AKO MMa HOBM U3UCKBAHUS KbM copTyepa,
TOraBa HAMa Aa Moanduunpame Beye
paboTeluuma Koa, a e nMnieMeHTupame HoB..

o

Open chest surgery is not needed when putting on a coat.

OPEN C l ()Sl D PR]\(lPl E

Coen Chet S 3 ot Needed Vihen Futhng On A Cost

http://lostechies.com/derickbailey/files/2011/03/OpenClosedPrinciple2_2C596E17.jpg
http://lostechies.com/derickbailey/files/2011/03/OpenClosedPrinciple2_2C596E17.jpg

WH Open-Close Principle - Bad example
class GraphicEditor {

public wvoid drawShape (Shape 3) |
1f (3.m type==1)
drawBRectangle(3):
else if (3.m_type==2)
drawCircle(3);
}
public void drawCircle(Circle r) {....}
public wvoid drawRectangle (Rectangle r)

}

class Shape |
int m_type;
1

class Rectangle extends Shape |
Bectangle() {
super.m type=1;
}
!

claszs Circle extends Shape {

[....1]

GraphicEditor

Hrawlrcle):vod
HlrawR ectangle (v oid
HlrawShapel) v oid

When'a new shape 15 added this
should be changed(and this is bad!t)

I
N

if (5. type == 1)
drawRectangle();

B,

glse if (5.m_type == .2

drawlircle();

Circle() {
guper.m type=2;

}

Rectangle |—— Shape < —— Circle

GraphicE ditor

i
+drawShapels Shapelv == t 5 el
' ¥
Shape
— <—
varaw ol Mo changes regired when a new
shape-is added{GoodHh.
Rectangle Circle

// Open-Close Principle - Good example

_ class GraphicEditor |

+draw(): void public void drawShape (Shape 3) |
3.draw() r

}
}

class Shape |
abatract void draw();

}

clazs BRectangle extends Shape |
public volid draw() {
S/ draw the rectangle

}

R
NMpuHUKMN Ha cybcTUuTyumMAaTa
(Jinckos)

« HacnepHuuute TpsibBa Aa 6bAaT 3aMecTuM oT
TexHuTe 6a30BK Kacose.

« [IpaBUIHa Mepapxus Ha KiacoBeTe.

« MeTtoan nnn YHKLUKU, KOUTO M3MON3BAT TUM
oT 6a30B Kknac, TpsibBa Aa mMoraT Aa paboTaT
n c 06eKTn OoT HacneaHuumTe 6e3 aa ce
Hanara NpoMsiHa.

If it looks like a duck, quacks like a duck, but needs
batteries — you probably have the wrong abstraction

http://lostechies.com/derickbailey/files/2011/03/LiskovSubtitutionPrinciple_52BB5162.jpg

L

Class Class
=+ Board
| = Properties =0 .
' Height { get: set: } : int roperues | ‘
T Tiles { get: set: } : int{][] ' ThreeDTiles { get; set: } : int{]{]()
" Width { get: set:) : int . 2 ZPos{get set }:int
= Methods = Methods
@ AddUnit{int unit, int x, inty) : void '*-' AddUnit(int x, int y, int 2) : 'ﬂ?ir.:l
¥ GetTile{int x, inty) : int{][] V¥ GetTile(int x, inty, string 2) : int
¥ GetUnits(int x, int y) : List W GetUnits(int x, inty, int2) : int
¥ RemoveUnit(int unit, int x, inty) : void H Removelnit(int x, inty, int 2) : veid
¥ RemoveUnits(int x, int y) : void ‘% RemoveUnits(int x, inty, int 2) : void
J | ’

Instead of extending Board, ThreeDBoard should be
composed of Board objects. One Board object per unit of
the Z axis.

ﬁ i
Interface Segregation
Principle (ISP)

Classes should not depend on interfaces that
they not use.

« The meaning of this phrase is to avoid tying a client
class to a big interface if only a subset of this
interface is really needed.

« Many times you see an interface which has lots of
methods.

« This is a bad design choice since probably a class
implementing it will infringe Single Responsibility
Principle and for many other issues which arises
when interfaces grow.

You want me to plug this in, where?

INTERFACE SEGREGATION PRINCIPLF

Ou Vet M 50 P T . VWhaie?

http://lostechies.com/derickbailey/files/2011/03/InterfaceSegregationPrinciple_60216468.jpg

I ——
SS interface segregation principle — bad example

interface IWorker |
public woid work();
public woid eat();

class Worker implements IWorker
public wvoid work() {

SF ... working
1
public woid eat{) |

o gating in launch brezsk
}

class SuperWorker implements IWorker{
public woid work({) |
S ... working much more

public woid eat() |
SS ... eating in launch break

class Manager |
IWorker worker;

public woid setWorker (IWorker w) |

worker=w;

public wvoid manage () {
worker . work () ;

S/ interface segregatiocn principle — good example
interface IWorker extends Feedable, Workakle |

}

interface IWorkakle |
public woid work();

interface IFeedable]
public void eat();

class Worker implements IWorkakle,
public wvoid work({) {
Fd - .. -working

IFeedakle]

public woid eat () {
Ff - ... eating in launch break

class Bobot implements IWorkable{
public woid work() {
Ffworking

class SuperWorker implements IWorkakle,
public wvoid work() {
Ff - ... working much more

IFeedakble

public woid eat() |
Ff ... eating in launch break

ﬁ i
Dependency Inversion
Principle (DIP)

» Depend upon abstractions. Do not depend
upon concretions.

« High-level modules should not depend on
low-level modules. Both should depend on

abstractions.
« Abstractions should not depend on details.

Details should depend on abstractions.

High Level Classes --> Abstraction Layer --> Low Level Classes

Would you solder a lamp directly to the electrical
wiring in a wall?

1)1 PENDENCY INVERSION PRING Il’l E

WOLME Tou SoRder A Lamg Drectly %o The Bactrosd Wiiag »» A vaa)

http://lostechies.com/derickbailey/files/2011/03/DependencyInversionPrinciple_0278F9E2.jpg

e

// Dependency Inversion Principle - Bad example [/ Dependency Inversion Principle - Good example

clasa Worker { interface IWorker |

EUELLE WILD TIZONL public woid work():

S ... working

| 1

1
cla3a3s Worker implement3 IWorker{

class Manager | public void work() {

Worker m worker; FfWoEKing

}

public wvoid setWorker (Worker w) |
N _wWorker=w;
1
class SuperWorker implements IWorker|

public void manage({) | public void work() {
m_worker.work(): F/ueeo wWorking much more
1 } ;
1
class SuperWorker |
public void work({) | class Manager |
ffee.. working much more IWorker m worker;
1
} public volid setWorker (IWorker w) |

N _Worker=w;

public wvoid manage() {
m_worker.work():

}

model-view-controller (MVC)

* In object-oriented programming
development, model-view-controller
(MVC) is the name of a methodology or
design pattern for successfully and
efficiently relating the user interface to
underlying data models.

model-view-controller (MVC)

* A Model , which represents the underlying, logical
structure of data in a software application and the
high-level class associated with it. This object model
does not contain any information about the user
interface.

* A View , which is a collection of classes representing
the elements in the user interface (all of the things
the user can see and respond to on the screen, such
as buttons, display boxes, and so forth)

* A Controller , which represents the classes connecting
the model and the view, and is used to communicate
between classes in the model and view.

