
Chapter 3

Object Oriented Programming Concepts

3.1 Introduction
The use of Object Oriented (OO) design and Object Oriented Programming (OOP) are becoming in-
creasingly popular. Thus, it is useful to have an introductory understanding of OOP and some of the
programming features of OO languages. You can develop OO software in any high level language, like
C or Pascal. However, newer languages such as Ada, C++, and F90 have enhanced features that make
OOP much more natural, practical, and maintainable. C++ appeared before F90 and currently, is prob-
ably the most popular OOP language, yet F90 was clearly designed to have almost all of the abilities of
C++ . However, rather than study the new standards many authors simply refer to the two decades old
F77 standard and declare that Fortran can not be used for OOP. Here we will overcome that misinformed
point of view.

Modern OO languages provide the programmer with three capabilities that improve and simplify
the design of such programs:encapsulation, inheritance,andpolymorphism(or generic functionality).
Related topics involveobjects, classes,anddata hiding. An objectcombines various classical data types
into a set that defines a new variable type, or structure. Aclassunifies the new entity types and supporting
data that represents its state with routines (functions and subroutines) that access and/or modify those
data. Every object created from a class, by providing the necessary data, is called aninstanceof the
class. In older languages like C and F77, the data and functions are separate entities. An OO language
provides a way to couple or encapsulate the data and its functions into a unified entity. This is a more
natural way to model real-world entities which have both data and functionality. The encapsulation is
done with a “module” block in F90, and with a “class” block in C++. This encapsulation also includes
a mechanism whereby some or all of the data and supporting routines can be hidden from the user. The
accessibility of the specifications and routines of a class is usually controlled by optional “public” and
“private” qualifiers. Data hidingallows one the means to protect information in one part of a program
from access, and especially from being changed in other parts of the program. In C++ the default is
that data and functions are “private” unless declared “public,” while F90 makes the opposite choice for
its default protection mode. In a F90 “module” it is the “contains” statement that, among other things,
couples the data, specifications, and operators before it to the functions and subroutines that follow it.

Class hierarchies can be visualized when we realize that we can employ one or more previously
defined classes (of data and functionality) to organize additional classes. Functionality programmed into
the earlier classes may not need to be re-coded to be usable in the later classes. This mechanism is called
inheritance. For example, if we have defined anEmployee class , then aManager class would
inherit all of the data and functionality of an employee. We would then only be required to add only
the totally new data and functions needed for a manager. We may also need a mechanism to re-define
specificEmployee class functions that differ for aManager class . By using the concept of a class
hierarchy, less programming effort is required to create the final enhanced program. In F90 the earlier
class is brought into the later class hierarchy by the “use” statement followed by the name of the “module”
statement block that defined the class.

Polymorphismallows different classes of objects that share some common functionality to be used in
code that requires only that common functionality. In other words, routines having the same generic name

c
2001 J.E. Akin 33

are interpreted differently depending on the class of the objects presented as arguments to the routines.
This is useful in class hierarchies where a small number of meaningful function names can be used to
manipulate different, but related object classes. The above concepts are those essential to object oriented
design and OOP. In the later sections we will demonstrate by example additional F90 implementations
of these concepts.

3.2 Encapsulation, Inheritance, and Polymorphism
We often need to use existing classes to define new classes. The two ways to do this are calledcomposition
and inheritance. We will use both methods in a series of examples. Consider a geometry program
that uses two different classes:class Circle andclass Rectangle , as represented graphically in
Figs. 3.1 and 3.2. and as partially implemented in F90 as shown in Fig. 3.3. Each class shown has the
data types and specifications to define the object and the functionality to compute their respective areas
(lines 3–22). The operator % is employed to select specific components of a defined type. Within the
geometry (main) program a single routine,compute area , is invoked (lines 38 and 44) to return the
area forany of the defined geometry classes. That is, a generic function name is used for all classes
of its arguments and it, in turn, branches to the corresponding functionality supplied with the argument
class. To accomplish this branching the geometry program first brings in the functionality of the desired
classes via a “use” statement for each class module (lines 25 and 26). Those “modules” are coupled to
the generic function by an “interface” block which has the generic function namecompute area (lines
28, 29). There is included a “module procedure” list which gives one class routine name for each of the
classes of argument(s) that the generic function is designed to accept. The ability of a function to respond
differently when supplied with arguments that are objects of different types is calledpolymorphism.
In this example we have employed different names,rectangular area andcircle area , in their
respective class modules, but that is not necessary. The “use” statement allows one to rename the class
routines and/or to bring in only selected members of the functionality.

Circle Class

radius

make_Circle

real

real pi

Circle

real

Circle

Circle_Area

Circle

Figure 3.1: Representation of a Circle Class

Another terminology used in OOP is that ofconstructorsanddestructorsfor objects. An intrinsic
constructor is a system function that is automatically invoked when an object is declared with all of its
possible components in the defined order (see lines 37 and 43). In C++, and F90 the intrinsic constructor
has the same name as the “type” of the object. One is illustrated in the statement

four sides = Rectangle (2.1,4.3)

where previously we declared

type (Rectangle) :: four sides

which, in turn, was coupled to theclass Rectangle which had two components, base and height,
defined in that order, respectively. The intrinsic constructor in the example statement sets component

c
2001 J.E. Akin 34

Figure 3.2: Representation of a Rectangle Class

[1] ! Areas of shapes of different classes, using different
[2] ! function names in each class
[3] module class Rectangle ! define the first object class
[4] implicit none
[5] type Rectangle
[6] real :: base, height ; end type Rectangle
[7] contains ! Computation of area for rectangles.
[8] function rectangle area (r) result (area)
[9] type (Rectangle), intent(in) :: r
[10] real :: area
[11] area = r%base * r%height ; end function rectangle area
[12] end module class Rectangle
[13]
[14] module class Circle ! define the second object class
[15] real :: pi = 3.1415926535897931d0 ! a circle constant
[16] type Circle
[17] real :: radius ; end type Circle
[18] contains ! Computation of area for circles.
[19] function circle area (c) result (area)
[20] type (Circle), intent(in) :: c
[21] real :: area
[22] area = pi * c%radius**2 ; end function circle area
[23] end module class Circle
[24]
[25] program geometry ! for both types in a single function
[26] use class Circle
[27] implicit none
[28] use class Rectangle
[29] ! Interface to generic routine to compute area for any type
[30] interface compute area
[31] module procedure rectangle area, circle area ; end interface
[32]
[33] ! Declare a set geometric objects.
[34] type (Rectangle) :: four sides
[35] type (Circle) :: two sides ! inside, outside
[36] real :: area = 0.0 ! the result
[37]
[38] ! Initialize a rectangle and compute its area.
[39] four sides = Rectangle (2.1, 4.3) ! implicit constructor
[40] area = compute area (four sides) ! generic function
[41] write (6,100) four sides, area ! implicit components list
[42] 100 format ("Area of ",f3.1," by ",f3.1," rectangle is ",f5.2)
[43]
[44] ! Initialize a circle and compute its area.
[45] two sides = Circle (5.4) ! implicit constructor
[46] area = compute area (two sides) ! generic function
[47] write (6,200) two sides, area
[48] 200 format ("Area of circle with ",f3.1," radius is ",f9.5)
[49] end program geometry ! Running gives:
[50] ! Area of 2.1 by 4.3 rectangle is 9.03
[51] ! Area of circle with 5.4 radius is 91.60885

Figure 3.3: Multiple Geometric Shape Classes

base = 2.1 and componentheight = 4.3 for that instance,four sides , of the typeRectangle .
This intrinsic construction is possible because all the expected components of the type were supplied. If
all the components are not supplied, then the object cannot be constructed unless the functionality of the

c
2001 J.E. Akin 35

[1] function make Rectangle (bottom, side) result (name)
[2] ! Constructor for a Rectangle type
[3] implicit none
[4] real, optional, intent(in) :: bottom, side
[5] type (Rectangle) :: name
[6] name = Rectangle (1.,1.) ! default to unit square
[7] if (present(bottom)) then ! default to square
[8] name = Rectangle (bottom, bottom) ; end if
[9] if (present(side)) name = Rectangle (bottom, side) ! intrinsic
[10] end function make Rectangle
[11] . . .
[12] type (Rectangle) :: four sides, square, unit sq
[13] ! Test manual constructors
[14] four sides = make Rectangle (2.1,4.3) ! manual constructor, 1
[15] area = compute area (four sides) ! generic function
[16] write (6,100) four sides, area
[17] ! Make a square
[18] square = make Rectangle (2.1) ! manual constructor, 2
[19] area = compute area (square) ! generic function
[20] write (6,100) square, area
[21] ! "Default constructor", here a unit square
[22] unit sq = make Rectangle () ! manual constructor, 3
[23] area = compute area (unit sq) ! generic function
[24] write (6,100) unit sq, area
[25] . . .
[26] ! Running gives:
[27] ! Area of 2.1 by 4.3 rectangle is 9.03
[28] ! Area of 2.1 by 2.1 rectangle is 4.41
[29] ! Area of 1.0 by 1.0 rectangle is 1.00

Figure 3.4: A Manual Constructor for Rectangles

class is expanded by the programmer to accept a different number of arguments.
Assume that we want a special member of theRectangle class, a square, to be constructed if the

height is omitted. That is, we would useheight = base in that case. Or, we may want to construct a
unit square if both are omitted so that the constructor defaults tobase = height = 1 . Such a manual
constructor, namedmake Rectangle , is illustrated in Fig. 3.4 (see lines 5, 6). It illustrates some
additional features of F90. Note that the last two arguments were declared to have the additional type
attributes of “optional” (line 3), and that an associated logical function “present” is utilized (lines 6 and 8)
to determine if the calling program supplied the argument in question. That figure also shows the results
of the area computations for the corresponding variables “square” and “unitsq” defined if the manual
constructor is called with one or no optional arguments (line 5), respectively.

In the next section we will illustrate the concept of data hiding by using theprivate attribute. The
reader is warned that the intrinsic constructor can not be employed if any of its arguments have been
hidden. In that case a manual constructor must be provided to deal with any hidden components. Since
data hiding is so common it is probably best to plan on prividing a manual constructor.

3.2.1 Example Date, Person, and Student Classes

Before moving to some mathematical examples we will introduce the concept of data hiding and combine
a series of classes to illustrate composition and inheritancey. First, consider a simple class to define dates
and to print them in a pretty fashion, as shown in Figs. 3.5 and 3.6. While other modules will have
access to the Date class they will not be given access to the number of components it contains (3),
nor their names (month, day, year), nor their types (integers) because they are declared “private” in the
defining module (lines 5 and 6). The compiler will not allow external access to data and/or routines
declared as private. The module,class Date , is presented as a source “include” file in Fig. 3.6, and
in the future will be reference by the file nameclass Date.f90 . Since we have chosen to hide all
the user defined components we must decide what functionality we will provide to the users, who may
have only executable access. The supporting documentation would have to name the public routines and
describe their arguments and return results. The default intrinsic constructor would be available only to
those that know full details about the components of the data type, and if those components are “public.”

yThese examples mimic those given in Chapter 11 and 8 of the J.R. Hubbard book “Programming with C++,” McGraw-Hill,
1994, and usually use the same data for verification.

c
2001 J.E. Akin 36

Date Class

month

Date_

integer

integer day

Date

Date

Date

Print_Date

Date

integer year

Read_DateDate

Set_DateDate

Figure 3.5: Graphical Representation of a Date Class

The intrinsic constructor,Date (lines 14 and 34), requires all the components be supplied, but it does
no error or consistency checks. My practice is to also define a “public constructor” whose name is the
same as the intrinsic constructor except for an appended underscore, that is,Date . Its sole purpose is to
do data checking and invoke the intrinsic constructor,Date . If the functionDate (line 10) is declared
“public” it can be used outside the moduleclass Date to invoke the intrinsic constructor, even if the
components of the data type being constructed are all “private.” In this example we have provided another
manual constructor to set a date,set Date (line 31), with a variable number of optional arguments. Also
supplied are two subroutines to read and print dates,read Date (line 27) andprint Date (line 16),
respectively.

A sample main program that employs this class is given in Fig. 3.7, which contains sample outputs
as comments. This program uses the default constructor as well as all three programs in the public class
functionality. Note that the definition of the class was copied in via an “include” (line 1) statement and
activated with the “use” statement (line 4).

Now we will employ theclass Date within a class Person which will use it to set the date of
birth (DOB) and date of death (DOD) in addition to the otherPerson components of name, national-
ity, and sex. As shown in Fig. 3.8, we have made all the type components “private,” but make all the
supporting functionality public, as represented graphically in Fig. 3.8. The functionality shown provides
a manual constructor,make Person , routines to set the DOB or DOD, and those for the printing of
most components. The source code for the newPerson class is given in Fig. 3.9. Note that the manual
constructor (line 12) utilizes “optional” arguments and initializes all components in case they are not
supplied to the constructor. TheDate public function from theclass Date is “inherited” to initial-
ize the DOB and DOD (lines 18, 57, and 62). That function member from the previous module was
activated with the combination of the “include” and “use” statements. Of course, the include could have
been omitted if the compile statement included the path name to that source. A sample main program
for testing theclass Person is in Fig. 3.10 along with comments containing its output. It utilizes the
constructorsDate (line 7),Person (line10), andmake Person (line 24).

Next, we want to use the previous two classes to define aclass Student which adds something
else special to the generalclass Person . The student person will have additional “private” compo-
nents for an identification number, the expected date of matriculation (DOM), the total course credit hours
earned (credits), and the overall grade point average (GPA), as represented in Fig. 3.11. The source lines
for the type definition and selected public functionality are given in Fig. 3.12. There the constructors
aremake Student (line 19) andStudent (line 47). A testing main program with sample output is
illustrated in Fig. 3.13. Since there are various ways to utilize the various constructors three alternate
methods have been included as comments to indicate some of the programmers options. The first two
include statements (lines 1, 2) are actually redundant because the thirdinclude automatically brings
in those first two classes.

c
2001 J.E. Akin 37

[1] module class Date ! filename: class Date.f90
[2] implicit none
[3] public :: Date ! and everything not "private"
[4]
[5] type Date
[6] private
[7] integer :: month, day, year ; end type Date
[8]
[9] contains ! encapsulated functionality
[10]
[11] function Date (m, d, y) result (x) ! public constructor
[12] integer, intent(in) :: m, d, y ! month, day, year
[13] type (Date) :: x ! from intrinsic constructor
[14] if (m < 1 .or. d < 1) stop ’Invalid components, Date ’
[15] x = Date (m, d, y) ; end function Date
[16]
[17] subroutine print Date (x) ! check and pretty print a date
[18] type (Date), intent(in) :: x
[19] character (len=*),parameter :: month Name(12) = &
[20] (/ "January ", "February ", "March ", "April ",&
[21] "May ", "June ", "July ", "August ",&
[22] "September", "October ", "November ", "December "/)
[23] if (x%month < 1 .or. x%month > 12) print *, "Invalid month"
[24] if (x%day < 1 .or. x%day > 31) print *, "Invalid day "
[25] print *, trim(month Name(x%month)),’ ’, x%day, ", ", x%year;
[26] end subroutine print Date
[27]
[28] subroutine read Date (x) ! read month, day, and year
[29] type (Date), intent(out) :: x ! into intrinsic constructor
[30] read *, x ; end subroutine read Date
[31]
[32] function set Date (m, d, y) result (x) ! manual constructor
[33] integer, optional, intent(in) :: m, d, y ! month, day, year
[34] type (Date) :: x
[35] x = Date (1,1,1997) ! default, (or use current date)
[36] if (present(m)) x%month = m ; if (present(d)) x%day = d
[37] if (present(y)) x%year = y ; end function set Date
[38]
[39] end module class Date

Figure 3.6: Defining a Date Class

[1] include ’class Date.f90’ ! see previous figure
[2] program main
[3] use class Date
[4] implicit none
[5] type (Date) :: today, peace
[6]
[7] ! peace = Date (11,11,1918) ! NOT allowed for private components
[8] peace = Date (11,11,1918) ! public constructor
[9] print *, "World War I ended on " ; call print Date (peace)
[10] peace = set Date (8, 14, 1945) ! optional constructor
[11] print *, "World War II ended on " ; call print Date (peace)
[12] print *, "Enter today as integer month, day, and year: "
[13] call read Date(today) ! create today’s date
[14]
[15] print *, "The date is "; call print Date (today)
[16] end program main ! Running produces:
[17] ! World War I ended on November 11, 1918
[18] ! World War II ended on August 14, 1945
[19] ! Enter today as integer month, day, and year: 7 10 1997
[20] ! The date is July 10, 1997

Figure 3.7: Testing a Date Class

3.3 Object Oriented Numerical Calculations
OOP is often used for numerical computation, especially when the standard storage mode for arrays is
not practical or efficient. Often one will find specialized storage modes like linked lists, or tree structures
used for dynamic data structures. Here we should note that many matrix operators are intrinsic to F90,
so one is more likely to define aclass sparse matrix than aclass matrix . However, either
class would allow us to encapsulate several matrix functions and subroutines into a module that could be
reused easily in other software. Here, we will illustrate OOP applied to rational numbers and introduce

c
2001 J.E. Akin 38

Person Class

name

Person_

character

character nationality

Person

Person

Person

make_Person

Person

integer sex

print_DOBPerson

print_DODPerson

Date Date_Of_Birth

Date Date_Of_Death

print_NamePerson

Person print_Nationality

print_SexPerson

set_DOBPerson

set_DODPerson

Figure 3.8: Graphical Representation of a Person Class

the important topic of operator overloading. Additional numerical applications of OOP will be illustrated
in later chapters.

3.3.1 A Rational Number Class and Operator Overloading
To illustrate an OOP approach to simple numerical operations we will introduce a fairly complete rational
number class, calledclass Rational which is represented graphically in Fig. 3.14. The defining F90
module is given in Fig. 3.15. The type components have been made private (line 5), but not the type
itself, so we can illustrate the intrinsic constructor (lines 38 and 102), but extra functionality has been
provided to allow users to get either of the two components (lines 52 and 57). The provided routines
shown in that figure are:

add Rational convert copy Rational delete Rational

equal integer gcd get Denominator get Numerator

invert is equal to list make Rational

mult Rational Rational reduce

Procedures with only one return argument are usually implemented as functions instead of subroutines.
Note that we would form a new rational number,z, as the product of two other rational numbers,x

andy, by invoking themult Rational function (line 90),
z = mult Rational (x, y)

which returnsz as its result. A natural tendency at this point would be to simply write this asz =

x � y. However, before we could do that we would have to have to tell the operator, “*”, how to act
when provided with this new data type. This is known asoverloadingan intrinsic operator. We had the
foresight to do this when we set up the module by declaring which of the “module procedures” were
equivalent to this operator symbol. Thus, from the “interface operator (*)” statement block (line 14)
the system now knows that the left and right operands of the “*” symbol correspond to the first and
second arguments in the functionmult Rational . Here it is not necessary to overload the assignment
operator, “=”, when both of its operands are of the same intrinsic or defined type. However, to convert

c
2001 J.E. Akin 39

[1] module class Person ! filename: class Person.f90
[2] use class Date
[3] implicit none
[4] public :: Person
[5] type Person
[6] private
[7] character (len=20) :: name
[8] character (len=20) :: nationality
[9] integer :: sex
[10] type (Date) :: dob, dod ! birth, death
[11] end type Person
[12] contains
[13] function make Person (nam, nation, s, b, d) result (who)
[14] ! Optional Constructor for a Person type
[15] character (len=*), optional, intent(in) :: nam, nation
[16] integer, optional, intent(in) :: s ! sex
[17] type (Date), optional, intent(in) :: b, d ! birth, death
[18] type (Person) :: who
[19] who = Person (" ","USA",1,Date (1,1,0),Date (1,1,0)) ! defaults
[20] if (present(nam)) who % name = nam
[21] if (present(nation)) who % nationality = nation
[22] if (present(s)) who % sex = s
[23] if (present(b)) who % dob = b
[24] if (present(d)) who % dod = d ; end function
[25]
[26] function Person (nam, nation, s, b, d) result (who)
[27] ! Public Constructor for a Person type
[28] character (len=*), intent(in) :: nam, nation
[29] integer, intent(in) :: s ! sex
[30] type (Date), intent(in) :: b, d ! birth, death
[31] type (Person) :: who
[32] who = Person (nam, nation, s, b, d) ; end function Person
[33]
[34] subroutine print DOB (who)
[35] type (Person), intent(in) :: who
[36] call print Date (who % dob) ; end subroutine print DOB
[37]
[38] subroutine print DOD (who)
[39] type (Person), intent(in) :: who
[40] call print Date (who % dod) ; end subroutine print DOD
[41]
[42] subroutine print Name (who)
[43] type (Person), intent(in) :: who
[44] print *, who % name ; end subroutine print Name
[45]
[46] subroutine print Nationality (who)
[47] type (Person), intent(in) :: who
[48] print *, who % nationality ; end subroutine print Nationality
[49]
[50] subroutine print Sex (who)
[51] type (Person), intent(in) :: who
[52] if (who % sex == 1) then ; print *, "male"
[53] else ; print *, "female" ; end if ; end subroutine print Sex
[54]
[55] subroutine set DOB (who, m, d, y)
[56] type (Person), intent(inout) :: who
[57] integer, intent(in) :: m, d, y ! month, day, year
[58] who % dob = Date (m, d, y) ; end subroutine set DOB
[59]
[60] subroutine set DOD(who, m, d, y)
[61] type (Person), intent(inout) :: who
[62] integer, intent(in) :: m, d, y ! month, day, year
[63] who % dod = Date (m, d, y) ; end subroutine set DOD
[64] end module class Person

Figure 3.9: Definition of a Typical Person Class

an integer to a rational we could, and have, defined an overloaded assignment operator procedure (line
10). Here we have provided the procedure,equal Integer , which is automatically invoked when
we write : type(Rational)y; y = 4 . That would be simpler than invoking the constructor called
make rational . Before moving on note that the system does not yet know how to multiply an integer
times a rational number, or visa versa. To do that one would have to add more functionality, such as a
function, sayint mult rn , and add it to the “module procedure” list associated with the “*” operator.
A typical main program which exercises most of the rational number functionality is given in Fig. 3.16,
along with typical numerical output. It tests the constructorsRational (line 8), make Rational

c
2001 J.E. Akin 40

[1] include ’class Date.f90’
[2] include ’class Person.f90’ ! see previous figure
[3] program main
[4] use class Date ; use class Person ! inherit class members
[5] implicit none
[6] type (Person) :: author, creator
[7] type (Date) :: b, d ! birth, death
[8] b = Date (4,13,1743) ; d = Date (7, 4,1826) ! OPTIONAL
[9] ! Method 1
[10] ! author = Person ("Thomas Jefferson", "USA", 1, b, d) ! NOT if private
[11] author = Person ("Thomas Jefferson", "USA", 1, b, d) ! constructor
[12] print *, "The author of the Declaration of Independence was ";
[13] call print Name (author);
[14] print *, ". He was born on "; call print DOB (author);
[15] print *, " and died on "; call print DOD (author); print *, ".";
[16] ! Method 2
[17] author = make Person ("Thomas Jefferson", "USA") ! alternate
[18] call set DOB (author, 4, 13, 1743) ! add DOB
[19] call set DOD (author, 7, 4, 1826) ! add DOD
[20] print *, "The author of the Declaration of Independence was ";
[21] call print Name (author)
[22] print *, ". He was born on "; call print DOB (author);
[23] print *, " and died on "; call print DOD (author); print *, ".";
[24] ! Another Person
[25] creator = make Person ("John Backus", "USA") ! alternate
[26] print *, "The creator of Fortran was "; call print Name (creator);
[27] print *, " who was born in "; call print Nationality (creator);
[28] print *, ".";
[29] end program main ! Running gives:
[30] ! The author of the Declaration of Independence was Thomas Jefferson.
[31] ! He was born on April 13, 1743 and died on July 4, 1826.
[32] ! The author of the Declaration of Independence was Thomas Jefferson.
[33] ! He was born on April 13, 1743 and died on July 4, 1826.
[34] ! The creator of Fortran was John Backus who was born in the USA.

Figure 3.10: Testing the Date and Person Classes

Student Class

who

Student_

Person

character id [SSN]

Student

Student

Student

make_Student

Student

Date matriculation

get_PersonStudent

print_DOMStudent

integer credits

real gpa

print_GPAStudent

set_DOMStudent

Figure 3.11: Graphical Representation of a Student Class

(lines 14, 18, 25), and a simple destructordelete Rational (line 38). The intrinsic constructor (line
6) could have been used only if all the attributes were public, and that is considered an undesirable
practice in OOP. The simple destructor actually just sets the “deleted” number to have a set of default
components. Later we will see that constructors and destructors often must dynamicallyallocate and
deallocate , respectively, memory associated with a specific instance of some object.

c
2001 J.E. Akin 41

[1] module class Student ! filename class Student.f90
[2] use class Person ! inherits class Date
[3] implicit none
[4] public :: Student, set DOM, print DOM
[5] type Student
[6] private
[7] type (Person) :: who ! name and sex
[8] character (len=9) :: id ! ssn digits
[9] type (Date) :: dom ! matriculation
[10] integer :: credits
[11] real :: gpa ! grade point average
[12] end type Student
[13] contains ! coupled functionality
[14]
[15] function get person (s) result (p)
[16] type (Student), intent(in) :: s
[17] type (Person) :: p ! name and sex
[18] p = s % who ; end function get person
[19]
[20] function make Student (w, n, d, c, g) result (x) ! constructor
[21] ! Optional Constructor for a Student type
[22] type (Person), intent(in) :: w ! who
[23] character (len=*), optional, intent(in) :: n ! ssn
[24] type (Date), optional, intent(in) :: d ! matriculation
[25] integer, optional, intent(in) :: c ! credits
[26] real, optional, intent(in) :: g ! grade point ave
[27] type (Student) :: x ! new student
[28] x = Student (w, " ", Date (1,1,1), 0, 0.) ! defaults
[29] if (present(n)) x % id = n ! optional values
[30] if (present(d)) x % dom = d
[31] if (present(c)) x % credits = c
[32] if (present(g)) x % gpa = g ; end function make Student
[33]
[34] subroutine print DOM (who)
[35] type (Student), intent(in) :: who
[36] call print Date(who%dom) ; end subroutine print DOM
[37]
[38] subroutine print GPA (x)
[39] type (Student), intent(in) :: x
[40] print *, "My name is "; call print Name (x % who)
[41] print *, ", and my G.P.A. is ", x % gpa, "." ; end subroutine
[42]
[43] subroutine set DOM (who, m, d, y)
[44] type (Student), intent(inout) :: who
[45] integer, intent(in) :: m, d, y
[46] who % dom = Date (m, d, y) ; end subroutine set DOM
[47]
[48] function Student (w, n, d, c, g) result (x)
[49] ! Public Constructor for a Student type
[50] type (Person), intent(in) :: w ! who
[51] character (len=*), intent(in) :: n ! ssn
[52] type (Date), intent(in) :: d ! matriculation
[53] integer, intent(in) :: c ! credits
[54] real, intent(in) :: g ! grade point ave
[55] type (Student) :: x ! new student
[56] x = Student (w, n, d, c, g) ; end function Student
[57] end module class Student

Figure 3.12: Defining a Typical Student Class

When considering which operators to overload for a newly defined object one should consider those
that are used insorting operations, such as the greater-than,>, and less-than,<, operators. They are
often useful because of the need to sort various types of objects. If those symbols have been correctly
overloaded then a generic object sorting routine might be used, or require few changes.

3.4 Discussion
The previous sections have only briefly touched on some important OOP concepts. More details will be
covered later after a general overview of the features of the Fortran language. There are more than one
hundred OOP languages. Persons involved in software development need to be aware that F90 can meet
almost all of their needs for a OOP language. At the same time it includes the F77 standard as a subset
and thus allows efficient use of the many millions of Fortran functions and subroutines developed in the
past. The newer F95 standard is designed to make efficient use of super computers and massively parallel

c
2001 J.E. Akin 42

[1] include ’class Date.f90’
[2] include ’class Person.f90’
[3] include ’class Student.f90’ ! see previous figure
[4] program main ! create or correct a student
[5] use class Student ! inherits class Person, class Date also
[6] implicit none
[7] type (Person) :: p ; type (Student) :: x
[8] ! Method 1
[9] p = make Person ("Ann Jones","",0) ! optional person constructor
[10] call set DOB (p, 5, 13, 1977) ! add birth to person data
[11] x = Student (p, "219360061", Date (8,29,1955), 9, 3.1) ! public
[12] call print Name (p) ! list name
[13] print *, "Born :"; call print DOB (p) ! list dob
[14] print *, "Sex :"; call print Sex (p) ! list sex
[15] print *, "Matriculated:"; call print DOM (x) ! list dom
[16] call print GPA (x) ! list gpa
[17] ! Method 2
[18] x = make Student (p, "219360061") ! optional student constructor
[19] call set DOM (x, 8, 29, 1995) ! correct matriculation
[20] call print Name (p) ! list name
[21] print *, "was born on :"; call print DOB (p) ! list dob
[22] print *, "Matriculated:"; call print DOM (x) ! list dom
[23] ! Method 3
[24] x = make Student (make Person("Ann Jones"), "219360061") ! optional
[25] p = get Person (x) ! get defaulted person data
[26] call set DOM (x, 8, 29, 1995) ! add matriculation
[27] call set DOB (p, 5, 13, 1977) ! add birth
[28] call print Name (p) ! list name
[29] print *, "Matriculated:"; call print DOM (x) ! list dom
[30] print *, "was born on :"; call print DOB (p) ! list dob
[31] end program main ! Running gives:
[32] ! Ann Jones
[33] ! Born : May 13, 1977
[34] ! Sex : female
[35] ! Matriculated: August 29, 1955
[36] ! My name is Ann Jones, and my G.P.A. is 3.0999999.
[37] ! Ann Jones was born on: May 13, 1977 , Matriculated: August 29, 1995
[38] ! Ann Jones Matriculated: August 29, 1995 , was born on: May 13, 1977

Figure 3.13: Testing the Student, Person, and Date Classes

machines. It includes most of the High Performance Fortran features that are in wide use. Thus, efficient
use of OOP on parallel machines is available through F90 and F95.

None of the OOP languages have all the features one might desire. For example, the useful concept
of a “template” which is standard in C++ is not in the F90 standard. Yet the author has found that a
few dozen lines of F90 code will define a preprocessor that allows templates to be defined in F90 and
expanded in line at compile time. The real challenge in OOP is the actual OOA and OOD that must be
completed before programming can begin, regardless of the language employed. For example, several
authors have described widely different approaches for defining classes to be used in constructing OO
finite element systems. Additional example applications of OOP in F90 will be given in the following
chapters.

c
2001 J.E. Akin 43

Rational Class

numerator

Rational_

integer

Rational

Rational

Rational

make_Rational

reduce

add_RationalRational

convertRational

integer denominator

copy_RationalRational

is_equal_toRational

integer gcd

Rational Rational

listRational

mult_RationalRational

invertRational

Rational delete_Rational

equal_RationalRational

get_DenominatorRational

get_NumeratorRational

Figure 3.14: Representation of a Rational Number Class

c
2001 J.E. Akin 44

[1] module class Rational ! filename: class Rational.f90
[2] implicit none
[3] ! public, everything but following private routines
[4] private :: gcd, reduce
[5] type Rational
[6] private ! numerator and denominator
[7] integer :: num, den ; end type Rational
[8]
[9] ! overloaded operators interfaces
[10] interface assignment (=)
[11] module procedure equal Integer ; end interface
[12] interface operator (+) ! add unary versions & (-) later
[13] module procedure add Rational ; end interface
[14] interface operator (*) ! add integer mult Rational, etc
[15] module procedure mult Rational ; end interface
[16] interface operator (==)
[17] module procedure is equal to ; end interface
[18] contains ! inherited operational functionality
[19] function add Rational (a, b) result (c) ! to overload +
[20] type (Rational), intent(in) :: a, b ! left + right
[21] type (Rational) :: c
[22] c % num = a % num*b % den + a % den*b % num
[23] c % den = a % den*b % den
[24] call reduce (c) ; end function add Rational
[25]
[26] function convert (name) result (value) ! rational to real
[27] type (Rational), intent(in) :: name
[28] real :: value ! decimal form
[29] value = float(name % num)/name % den ; end function convert
[30]
[31] function copy Rational (name) result (new)
[32] type (Rational), intent(in) :: name
[33] type (Rational) :: new
[34] new % num = name % num
[35] new % den = name % den ; end function copy Rational
[36]
[37] subroutine delete Rational (name) ! deallocate allocated items
[38] type (Rational), intent(inout) :: name ! simply zero it here
[39] name = Rational (0, 1) ; end subroutine delete Rational
[40]
[41] subroutine equal Integer (new, I) ! overload =, with integer
[42] type (Rational), intent(out) :: new ! left side of operator
[43] integer, intent(in) :: I ! right side of operator
[44] new % num = I ; new % den = 1 ; end subroutine equal Integer
[45]
[46] recursive function gcd (j, k) result (g) ! Greatest Common Divisor
[47] integer, intent(in) :: j, k ! numerator, denominator
[48] integer :: g
[49] if (k == 0) then ; g = j
[50] else ; g = gcd (k, modulo(j,k)) ! recursive call
[51] end if ; end function gcd
[52]
[53] function get Denominator (name) result (n) ! an access function
[54] type (Rational), intent(in) :: name
[55] integer :: n ! denominator
[56] n = name % den ; end function get Denominator

(Fig. 3.15, A Fairly Complete Rational Number Class (continued))

c
2001 J.E. Akin 45

[57] function get Numerator (name) result (n) ! an access function
[58] type (Rational), intent(in) :: name
[59] integer :: n ! numerator
[60] n = name % num ; end function get Numerator
[61]
[62] subroutine invert (name) ! rational to rational inversion
[63] type (Rational), intent(inout) :: name
[64] integer :: temp
[65] temp = name % num
[66] name % num = name % den
[67] name % den = temp ; end subroutine invert
[68]
[69] function is equal to (a given, b given) result (t f)
[70] type (Rational), intent(in) :: a given, b given ! left == right
[71] type (Rational) :: a, b ! reduced copies
[72] logical :: t f
[73] a = copy Rational (a given) ; b = copy Rational (b given)
[74] call reduce(a) ; call reduce(b) ! reduced to lowest terms
[75] t f = (a%num == b%num) .and. (a%den == b%den) ; end function
[76]
[77] subroutine list(name) ! as a pretty print fraction
[78] type (Rational), intent(in) :: name
[79] print *, name % num, "/", name % den ; end subroutine list
[80]
[81] function make Rational (numerator, denominator) result (name)
[82] ! Optional Constructor for a rational type
[83] integer, optional, intent(in) :: numerator, denominator
[84] type (Rational) :: name
[85] name = Rational(0, 1) ! set defaults
[86] if (present(numerator)) name % num = numerator
[87] if (present(denominator)) name % den = denominator
[88] if (name % den == 0) name % den = 1 ! now simplify
[89] call reduce (name) ; end function make Rational
[90]
[91] function mult Rational (a, b) result (c) ! to overload *
[92] type (Rational), intent(in) :: a, b
[93] type (Rational) :: c
[94] c % num = a % num * b % num
[95] c % den = a % den * b % den
[96] call reduce (c) ; end function mult Rational
[97]
[98] function Rational (numerator, denominator) result (name)
[99] ! Public Constructor for a rational type
[100] integer, optional, intent(in) :: numerator, denominator
[101] type (Rational) :: name
[102] if (denominator == 0) then ; name = Rational (numerator, 1)
[103] else ; name = Rational (numerator, denominator) ; end if
[104] end function Rational
[105]
[106] subroutine reduce (name) ! to simplest rational form
[107] type (Rational), intent(inout) :: name
[108] integer :: g ! greatest common divisor
[109] g = gcd (name % num, name % den)
[110] name % num = name % num/g
[111] name % den = name % den/g ; end subroutine reduce
[112] end module class Rational

Figure 3.15: A Fairly Complete Rational Number Class

c
2001 J.E. Akin 46

[1] include ’class Rational.f90’
[2] program main
[3] use class Rational
[4] implicit none
[5] type (Rational) :: x, y, z
[6] ! ------- only if Rational is NOT private ----------
[7] ! x = Rational(22,7) ! intrinsic constructor if public components
[8]
[9] x = Rational (22,7) ! public constructor if private components
[10] write (*,’("public x = ")’,advance=’no’); call list(x)
[11] write (*,’("converted x = ", g9.4)’) convert(x)
[12] call invert(x)
[13] write (*,’("inverted 1/x = ")’,advance=’no’); call list(x)
[14]
[15] x = make Rational () ! default constructor
[16] write (*,’("made null x = ")’,advance=’no’); call list(x)
[17] y = 4 ! rational = integer overload
[18] write (*,’("integer y = ")’,advance=’no’); call list(y)
[19] z = make Rational (22,7) ! manual constructor
[20] write (*,’("made full z = ")’,advance=’no’); call list(z)
[21] ! Test Accessors
[22] write (*,’("top of z = ", g4.0)’) get numerator(z)
[23] write (*,’("bottom of z = ", g4.0)’) get denominator(z)
[24] ! Misc. Function Tests
[25] write (*,’("making x = 100/360, ")’,advance=’no’)
[26] x = make Rational (100,360)
[27] write (*,’("reduced x = ")’,advance=’no’); call list(x)
[28] write (*,’("copying x to y gives ")’,advance=’no’)
[29] y = copy Rational (x)
[30] write (*,’("a new y = ")’,advance=’no’); call list(y)
[31] ! Test Overloaded Operators
[32] write (*,’("z * x gives ")’,advance=’no’); call list(z*x) ! times
[33] write (*,’("z + x gives ")’,advance=’no’); call list(z+x) ! add
[34] y = z ! overloaded assignment
[35] write (*,’("y = z gives y as ")’,advance=’no’); call list(y)
[36] write (*,’("logic y == x gives ")’,advance=’no’); print *, y==x
[37] write (*,’("logic y == z gives ")’,advance=’no’); print *, y==z
[38] ! Destruct
[39] call delete Rational (y) ! actually only null it here
[40] write (*,’("deleting y gives y = ")’,advance=’no’); call list(y)
[41] end program main ! Running gives:
[42] ! public x = 22 / 7 ! converted x = 3.143
[43] ! inverted 1/x = 7 / 22 ! made null x = 0 / 1
[44] ! integer y = 4 / 1 ! made full z = 22 / 7
[45] ! top of z = 22 ! bottom of z = 7
[46] ! making x = 100/360, reduced x = 5 / 18
[47] ! copying x to y gives a new y = 5 / 18
[48] ! z * x gives 55 / 63 ! z + x gives 431 / 126
[49] ! y = z gives y as 22 / 7 ! logic y == x gives F
[50] ! logic y == z gives T ! deleting y gives y = 0 / 1

Figure 3.16: Testing the Rational Number Class

c
2001 J.E. Akin 47

3.5 Exercises
1. Use theclass Circle to create aclass Sphere that computes the volume of a sphere. Have

a method that accepts an argument of aCircle . Use theradius of the Circle via a new member
get Circle radius to be added to theclass Circle .

2. Use theclass Circle andclass Rectangle to create aclass Cylinder that computes
the volume of a right circular cylinder. Have a method that accepts arguments of aCircle and aheight ,
and a second method that accepts arguments of aRectangle and aradius . In the latter member
use theheight of the Rectangle via a new memberget Rectangle height to be added to the
class Rectangle .

3. Create a vector class to treat vectors with an arbitrary number of real coefficients. Assume that the
class Vector is defined as follows:

Vector Class

size

assign

integer

Vector

Vector make_Vector

add_Real_to_VectorVector

add_VectorVector

real, pointer data (:)

copy_VectorVector

is_equal_tological

Vector Vector

valuesreal

normalize_VectorVector

listVector

Vector delete_Vector

dot_Vectorreal

equal_RealVector

lengthreal

size_Vectorinteger

subtract_RealVector

real_mult_VectorVector

read_VectorVector

subtract_VectorVector

Vector_mult_realVector

 Vector_Vector

Vector_max_valuereal

Vector_min_valuereal

Overload the common operators of (+) withadd Vector andadd Real to Vector , (–) with
subtract Vector andsubtract Real , (*) with dot Vector , real mult Vector andVec-

tor mult real , (=) with equal Real to set all coefficients to a single real number, and (==) with
routineis equal to .

Include two constructorsassignandmake Vector . Let assignconvert a real array into an instance
of a Vector. Provide a destructor, means to read and write a Vector, normalize a Vector, and determine its
extreme values.

c
2001 J.E. Akin 48

4. Modify the above Vector class to extend it to aSparse Vector Class where the vast majority
of the coefficients are zero. Store and operate only on the non-zero entries.

Sparse_Vector Class

non_zerosinteger

Sparse_Vector make_Sparse_Vector

add_Real_to_Sparse_VectorSparse_Vector

add_Sparse_VectorSparse_Vector

real, pointer values (:)

el_by_el_Mult

Sparse_Vector

is_equal_tological

Sparse_Vector Sparse_Vector

show_r_vSparse_Vector

normalize_Vector

largest_indexinteger

Sparse_Vector

delete_Sparse_Vector

dot_Vectorreal

equal_VectorSparse_Vector

lengthreal

rows_ofinteger

set_elementSparse_Vector

real_mult_SparseSparse_Vector

read_Vector

Sparse_Vector

showSparse_Vector

Sparse_mult_realSparse_Vector

size_ofinteger

sub_Sparse_VectorSparse_vector

sum_Sparse_VectorSparse_Vector

integer, pointer rows (:)

real get_element

normreal

normalize_Vector

Sparse_Vector pretty

Sparse_Vector

Vector_max_valuereal

Vector_min_valuereal

Sparse_Vector Vector_to_Sparse

Sparse_Vector zero_Sparse

c
2001 J.E. Akin 49

