
Process Description and 
Control

Chapter 3



Contents

?Process states
?Process description
?Process control
?Unix process management



Process

?From processor’s point of view
?execute instruction dictated by program 

counter
?interleave the execution of various processes 

?From individual program’s point of view
?executes a sequence of instructions within 

that program









Two-State Process Model

?Process may be in one of two states
?Running
?Not-running



Not-Running Process in a 
Queue



Dispatcher

?A program that moves the processor from 
one process to another
?Selects a process from the queue to 

execute after interrupt or process 
termination
?Prevents a single process from 

monopolizing the processor time



Process Creation

?Submission of a batch job
?User logs on
?Created by OS to provide a service
?a process to control printing
?a process to control network connection

? Spawned by an existing process



Process Spawning

?A process is created by OS at the explicit 
request of another process
?fork()

?Parent process, child process
?Related processes need to communicate 

and cooperate with each other



Process Termination

?Batch job issues Halt instruction
?User logs off
?Quit an application
?e.g., word processing

?Error and fault conditions



Reasons for Process 
Termination

?Normal completion
?Time limit exceeded
?Memory unavailable
?Bounds violation
?Protection error
?example : write to read-only file

?Arithmetic error
?Time overrun
?process waited longer than a specified maximum for 

an event



Reasons for Process 
Termination

?I/O failure
?Invalid instruction
?happens when try to execute data

?Privileged instruction
?Data misuse
?Operating system intervention
?such as when deadlock occurs

?Parent terminates so child processes terminate
?Parent request



A Five-State Model

?Inadequacy of two-state model 
?some processes in Not-running state are 

ready to execute, whereas others are blocked
?dispatcher could not just select the process at 

the oldest end of the queue
?dispatcher would have to scan the list looking 

for the processes
?need to split the Not-running state into two 

states
?Ready state and Blocked state



A Five-State Model

?Running
?Ready
?Blocked
?New
?a process has just been created but has not 

yet been admitted to main memory

?Exit
?a process has been released from the pool of 

executable processes by OS







Using Blocked Queues





Suspended Processes

?The Need for Swapping 
?processor is faster than I/O, so all processes 

could be waiting for I/O
?thus, even with multiprogramming, a 

processor could be idle most of the time
?solution 
?main memory could be expanded, and so be able 

to accommodate more processes
?swapping



Suspended Processes

?Swapping 
?moving part or all of a process from main 

memory to disk
?swap in and swap out
?Blocked state becomes suspend state when 

swapped to disk
?suspended queue : a queue of existing 

processes that have been temporarily kicked 
out of main memory, or suspended



One Suspend State



Suspended Processes

?Problem of one suspended state
?swapped out processes could be ready in the 

mean time
?two new states are needed
?Blocked, suspend
?Ready, suspend



Two Suspend States



Reasons for Process 
Suspension



What is the Role of OS?

?Controller of events within the computer
?Schedules and dispatches processes for 

execution by the processor 
?Allocates resources to processes 
?Responds to requests by user programs
?Entity that manages the use of system 

resources by processes 



Operating System Control 
Structures

?Tables are constructed for each entity the 
operating system manages
?process tables
?memory tables
?I/O tables
?file tables



Memory Tables

?Allocation of main memory to processes
?Allocation of secondary memory to 

processes
?Protection attributes for access to shared 

memory regions
?Information needed to manage virtual 

memory



I/O Tables

?I/O device is available or assigned
?Status of I/O operation
?Location in main memory being used as 

the source or destination of the I/O 
transfer



File Tables

?Existence of files
?Location on secondary memory
?Current Status
?Attributes
?Sometimes this information is maintained 

by a file-management system



Process Table

?Where the process attributes are stored
?process ID, parent process ID
?process state
?execution time so far
?location in memory
?……...



Process Image

?User Data
?modifiable user space(user data, user stack)

?User Program
?the program to be executed

?System Stack
?store parameters of system calls

?Process Control Block
?data needed by OS to control the process



Process Control Block

?Process identification
?Processor state information
?Process control information



Process Control Block

?Process Identification
?Process identifier
?unique numeric identifier
?may be an index into the primary process table

?User identifier
?who is responsible for the job
?real-user id, real-group id
?effective-user id, effective-group id



Process Control Block

?Processor State Information
?User-Visible Registers
?A user-visible register is one that may be 

referenced by means of the machine language 
that the processor executes. Typically, there are 
from 8 to 32 of these registers, although some 
RISC implementations have over 100



Process Control Block

?Processor State Information
?Control and Status Registers

These are a variety of processor registers that are employed 
to control the operation of the processor. These include
?Program counter: Contains the address of the next 

instruction to be fetched
?Condition codes: Result of the most recent arithmetic or 

logical operation (e.g., sign, zero, carry, equal, overflow)
?status information: Includes interrupt enabled/disabled flags, 

execution mode



Process Control Block

?Processor State Information
?Stack Pointers
?Each process has one or more last-in-first-out 

(LIFO) system stacks associated with it. A stack is 
used to store parameters and calling addresses for 
procedure and system calls. The stack pointer 
points to the top of the stack.



Pentium II EFLAGS 
Register



Process Control Block

?Process Control Information
?scheduling and state information
?data structuring
?interprocess communication
?process privileges
?memory management
?resource ownership and utilization



Process Control Block

?Scheduling and State Information
This is the formation that is needed by the operating system to 
perform its scheduling function. Typical items of information:
?Process state: defines the readiness of the process to be 
scheduled for execution (e.g., running, ready, waiting, halted).
?Priority: One or more fields may be used to describe the 
scheduling priority of the process. In some systems, several 
values are required (e.g., default, current, highest-allowable)
?Scheduling-related information: This will depend on the 
scheduling algorithm used. Examples are the amount of time 
that the process has been waiting and the amount of time that 
the process executed the last time it was running.
?Event: Identity of event the process is awaiting before it can 
be resumed



Process Control Block

?Data Structuring
?A process may be linked to other process in a 

queue, ring, or some other structure. For example, 
all processes in a waiting state for a particular 
priority level may be linked in a queue. A process 
may exhibit a parent-child (creator-created) 
relationship with another process. The process 
control block may contain pointers to other 
processes to support these structures.



Process Control Block

?Interprocess Communication
?Various flags, signals, and messages may be associated with 

communication between two independent processes. Some 
or all of this information may be maintained in the process 
control block

?Process Privileges
?Processes are granted privileges in terms of the memory 

that may be accessed and the types of instructions that may 
be executed. In addition, privileges may apply to the use of 
system utilities and services



Process Control Block

?Memory Management
?This section may include pointers to segment 

and/or page tables that describe the virtual 
memory assigned to this process.

?Resource Ownership and Utilization
?Resources controlled by the process may be 

indicated, such as opened files. A history of 
utilization of the processor or other resources may 
also be included; this information may be needed 
by the scheduler.



Modes of Execution

?User Mode
?less privileged mode 
?user program typically execute in this mode

? Kernel Mode 
?more privileged mode 
?has complete control of the processor and all 

its instructions, registers, and memory
?not desirable for user programs



Typical Functions of an 
Operating System Kernel

?Process Management
?Memory Management
?I/O Management 
?Support Functions



Typical Functions of an 
Operating-System Kernel

?Process Management
?Process creation and termination
?Process scheduling and dispatching
?Process switching
?Process synchronization and support for 

inter-process communication
?Management of process control blocks



Typical Functions of an 
Operating-System Kernel

?Memory Management
?Allocation of address space to processes
?Swapping
?Page and segment management



Typical Functions of an 
Operating-System Kernel
?I/O Management
?Buffer management
?Allocation of I/O channels and devices to 

processes

?Support Functions
?Interrupt handling
?Accounting
?Monitoring



Process Creation

?Assign a unique process identifier
?Allocate space for the process
?Initialize process control block
?Set up appropriate linkages
?Ex: add new process to linked list used for 

scheduling queue
?Other
?maintain an accounting file



When to Switch a Process

?Interrupts
?Clock interrupt
?process has executed for the maximum allowable 

time slice

?I/O interrupt
?Memory fault
?memory address is in virtual memory so it must be 

brought into main memory



When to Switch a Process

?Trap
?error occurred during program execution
?division by zero

?may cause process to be moved to Exit state

?Supervisor call
?system call
?such as file open



Change of Process State

?Save context of processor including 
program counter and other registers
?Update the process control block with the 

new state and any accounting information
?Move process control block to appropriate 

queue - ready, blocked
?Select another process for execution



Change of Process State

?Update the process control block of the 
process selected
?Update memory-management data 

structures
?Restore context of the selected process



Execution of the Operating 
System

?Nonprocess Kernel
?execute kernel outside of any process
?operating system code is executed as a separate 

entity that operates in privileged mode

?Execution Within User Processes
?operating system software within the context of a 

user process
?a process switch is not performed, just a mode switch within 

the same process

?process executes in privileged mode when executing 
operating system code





Execution of the Operating 
System

?Process-Based Operating System
?major kernel functions are separate user 

processes
?modular design and clean interfaces

?useful in multi-processor or multi-computer 
environment
?naturally implements client-server computing



UNIX Process States




