Process Description and
Control

Chapter 3

Contents

Process states

Process description
Process control

Jnix process management

Process

From processor’s point of view

execute Instruction dictated by program
counter

Interleave the execution of various processes

From individual program’s point of view

executes a sequence of instructions within
that program

Address — Main Memory Program Counter

0
T 8000 ¥ |
Dispatcher
5000
Process A
S000
Ei
Process B
12000
Process C

Figure 3.1 Snapshot of Example Execution (Figure 3.3)
at Instruction Cycle 13

5000 8000 12000

5001 a001 12001
5002 a002 12002
5003 a003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
{a) Trace of Process A {h) Trace of Process B {c) Trace of Process C

2000 = Starting address of program of Process 4
A000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 Traces of Processes of Figure 3.1

1 A000 27 12004
2 ano1 28 12005
3 502 e Time out
4 A003 209 100

5 004 30 101

f A005 3 10z
..................... Tite out 32 103

T 100 33 104

2 101 34 105

| 102 35 006
10 103 36 A007
11 104 37 A008
12 105 38 a009
13 000 39 5010
14 8001 40 Jn
15 2002 s Time out
1a 2003 41 100
.................. [0 request 43 101
17 100 43 10z
18 101 44 103
19 102 45 104
20 103 44 103
21 104 47 12006
22 105 43 12007
23 12000 44 12008
24 12001 a0 12009
25 12002 a1 12010
26 12003 5 12011

_____________________ Titme out

100 = Startmyg addvess of dispatcher program

shaded areas indicate exemutonof dispatcher process;
first and third cobunns cout mstrction cyeles;
second and fourth cobirmns showr address of mmstrctionbeing exemted

Figure 23 Combhined Trace of Processes of Figure 3.1

Two-State Process Model

Process may be in one of two states

Running
Not-running
Dispatch
Enter .@ﬁ“g) (Running Exit

Pause

(a) State transition dlagram

Not-Running Process In a
Queue

Quene

Enter Dispatch Exit

Processor

' |

Pause

(b} Quenlng dlagram

Dispatcher

A program that moves the processor from
one process to another

Selects a process from the queue to
execute after interrupt or process
termination

Prevents a single process from
monopolizing the processor time

Process Creation

Submission of a batch job
User logs on

Created by OS to provide a service
a process to control printing
a process to control network connection

Spawned by an existing process

Process Spawning

A process Is created by OS at the explicit
request of another process

fork()
Parent process, child process

Related processes need to communicate
and cooperate with each other

Process Termination

Batch job Issues Halt instruction
User logs off

Quit an application
e.g., word processing

Error and fault conditions

Reasons for Process
Termination

Normal completion
Time limit exceeded
Memory unavailable
Bounds violation

Protection error
example : write to read-only file

Arithmetic error

Time overrun

process waited longer than a specified maximum for
an event

Reasons for Process
Termination

/0 failure

Invalid instruction
happens when try to execute data

Privileged instruction
Data misuse

Operating system intervention
such as when deadlock occurs

Parent terminates so child processes terminate
Parent request

A Five-State Model

Inadequacy of two-state model

S

ome processes In Not-running state are

ready to execute, whereas others are blocked

C

Ispatcher could not just select the process at

the oldest end of the queue

C

Ispatcher would have to scan the list looking

for the processes

need to split the Not-running state into two
states

Ready state and Blocked state

A Five-State Model

Running
Ready
Blocked

New

a process has just been created but has not
yet been admitted to main memory

Exit
a process has been released from the pool of
executable processes by OS

Dispatch

.

Timeout

Figure 3.5 Five-State Process Model

Pllms\ﬁ ‘la -
[N L L R R R R R N N L
, MM MMM MNP ettt
Process B L L MW R, it

Process C

= Blocked

- = Running = Ready

Figure 3.0 Process States for Trace of Figure 3.3

Using Blocked Queues

Event
Occurs

Event Walit
—{[I]IIT -

(a) Single blocked queue

R-EE[I} ﬂ e e F RE: IE.'_'IEE
Admit Dispatch .
‘ - Processor

Timeout

Event 1 Queune

Event 1 - Event 1 Wallt
Occurs

Event 2 (Quene

Event 2 - Event 2 Wallt
occurs

¥
¥
¥

Event n Quene

Event n Event n Wall
-—
Occurs

(b) Multiple blocked queues

Suspended Processes

The Need for Swapping

processor Is faster than 1/0, so all processes
could be waiting for 1/0

thus, even with multiprogramming, a
processor could be idle most of the time
solution

main memory could be expanded, and so be able
to accommodate more processes

swapping

Suspended Processes

Swapping
moving part or all of a process from main
memory to disk
swap In and swap out
Blocked state becomes suspend state when
swapped to disk

suspended queue : a queue of existing
processes that have been temporarily kicked

out of main memory, or suspended

One Suspend State

{a) With One Suspend State

Suspended Processes

Problem of one suspended state

swapped out processes could be ready in the
mean time

two new states are needed
Blocked, suspend
Ready, suspend

Two Suspend States

L=
__--.-l'ﬂ-'--'-'
4-"' b
-
F
. _I} Activate ‘
C.—€-
2 ‘ Suspend ‘
=1 = 21E
— —
e qE
= =
ey Actlvate
s
i bena ked
: Suspend

(b) With Two Suspend States

Reasons for Process

Suspension

Swapping

Cither (S reazon

Interactive user request

Titning

Parent process request

The operating system needs to release sufficient main
temoty to bring in a process that 15 ready to execute.

The operating system tnay suspend a background or utility
process of a process that 15 suspected of causing a problem.

& uszer may wish to suspend execution of a program for
purposes of debugeing or in connection with the use of a
rESCULCE.

& process may be executed periodically (e g, an
accounting or system monitoring process) and may be
suspended while waiting for the next time interval

& parent process may wish to suspend execution of a
descendent to examine of modify the suspended process, or
to coordinate the activity of various descendents.

What i1s the Role of OS?

Controller of events within the computer

Schedules and dispatches processes for
execution by the processor

Allocates resources to processes
Responds to requests by user programs

Entity that manages the use of system
resources by processes

Operating System Control
Structures

Tables are constructed for each entity the
operating system manages

process tables

memory tables

/0 tables
file tables

Memory Tables

Allocation of main memory to processes

Allocation of secondary memory to
processes

Protection attributes for access to shared
memory regions

Information needed to manage virtual
memory

/O Tables

/0O device Is avallable or assigned
Status of 1/0 operation

Location in main memory being used as
the source or destination of the 1/0
transfer

File Tables

Existence of files
Location on secondary memory
Current Status

Attributes

Sometimes this information is maintained
by a file-management system

Process Table

Where the process attributes are stored
process ID, parent process ID

process state

execution time so far

location in memory

Process Image

User Data
modifiable user space(user data, user stack)

User Program
the program to be executed

System Stack
store parameters of system calls

Process Control Block
data needed by OS to control the process

Process Control Block

Process Identification
Processor state information
Process control information

Process Control Block

Process ldentification

Process identifier
unigue numeric identifier
may be an index into the primary process table

User identifier
who is responsible for the job
real-user id, real-group id
effective-user id, effective-group id

Process Control Block

Processor State Information

User-Visible Registers

A user-visible register is one that may be
referenced by means of the machine language
that the processor executes. Typically, there are
from 8 to 32 of these registers, although some
RISC implementations have over 100

Process Control Block

Processor State Information

Control and Status Registers

These are a variety of processor registers that are employed
to control the operation of the processor. These include

Program counter: Contains the address of the next
Instruction to be fetched

Condition codes: Result of the most recent arithmetic or
logical operation (e.g., sign, zero, carry, equal, overflow)

status information: Includes interrupt enabled/disabled flags,
execution mode

Process Control Block

Processor State Information

Stack Pointers

Each process has one or more last-in-first-out
(LIFO) system stacks associated with it. A stack is
used to store parameters and calling addresses for
procedure and system calls. The stack pointer
points to the top of the stack.

Pentium Il EFLAGS
Register

15

-
-

- M=

I = Identification flag DF = Direction flag

VIP = Virtual interrupt pending IF = Interrupt enable flag
VIF = Virtual interrupt flag TF = Trap flag

AC = Alignment check SF = Signflag

VM = Virtual 8056 mode ZF = Zero flag

RF = Resume flag AF = Auxiliary carry flag
NT = Nested task flag PF = Parity flag

IOPL = LO privilege level CF = Carry flag

OF = Overflow flag

Figure 3.11 Pentium II EFLAGS Register

Process Control Block

Process Control Information
scheduling and state information
data structuring
Interprocess communication
process privileges
memory management
resource ownership and utilization

Process Control Block

Scheduling and State Information

This is the formation that is needed by the operating system to
perform its scheduling function. Typical items of information:

Process state: defines the readiness of the process to be
scheduled for execution (e.g., running, ready, waiting, halted).

Priority: One or more fields may be used to describe the
scheduling priority of the process. In some systems, several
values are required (e.g., default, current, highest-allowable)

Scheduling-related information: This will depend on the
scheduling algorithm used. Examples are the amount of time
that the process has been waiting and the amount of time that
the process executed the last time it was running.

Event: Identity of event the process is awaiting before it can
be resumed

Process Control Block

Data Structuring

A process may be linked to other process in a
gueue, ring, or some other structure. For example,
all processes in a waiting state for a particular
priority level may be linked in a queue. A process
may exhibit a parent-child (creator-created)
relationship with another process. The process
control block may contain pointers to other
processes to support these structures.

Process Control Block

Interprocess Communication

Various flags, signals, and messages may be associated with
communication between two independent processes. Some

or all of this information may be maintained in the process
control block

Process Privileges

Processes are granted privileges in terms of the memory
that may be accessed and the types of instructions that may
be executed. In addition, privileges may apply to the use of
system utilities and services

Process Control Block

Memory Management

This section may include pointers to segment
and/or page tables that describe the virtual
memory assigned to this process.

Resource Ownership and Utilization

Resources controlled by the process may be
Indicated, such as opened files. A history of
utilization of the processor or other resources may
also be included; this information may be needed
by the scheduler.

Modes of Execution

User Mode

less privileged mode
user program typically execute in this mode

Kernel Mode
more privileged mode

has complete control of the processor and all
Its instructions, registers, and memory

not desirable for user programs

Typical Functions of an
Operating System Kernel

Process Management
Memory Management
/0 Management
Support Functions

Typical Functions of an
Operating-System Kernel

Process Management

Process creation and termination
Process scheduling and dispatching
Process switching

Process synchronization and support for
Inter-process communication

Management of process control blocks

Typical Functions of an
Operating-System Kernel

Memory Management
Allocation of address space to processes
Swapping
Page and segment management

Typical Functions of an
Operating-System Kernel

/0 Management
Buffer management

Allocation of 1/0 channels and devices to
Processes

Support Functions
Interrupt handling
Accounting
Monitoring

Process Creation

Assign a unigue process identifier
Allocate space for the process
Initialize process control block

Set up appropriate linkages

Ex: add new process to linked list used for
scheduling queue

Other
maintain an accounting file

When to Switch a Process

Interrupts

Clock interrupt

process has executed for the maximum allowable
time slice

1/0 Iinterrupt

Memory fault

memory address is in virtual memory so it must be
brought into main memory

When to Switch a Process

Trap

error occurred during program execution
division by zero

may cause process to be moved to Exit state
Supervisor call

system call
such as file open

Change of Process State

Save context of processor including
program counter and other registers

Update the process control block with the
new state and any accounting information

Move process control block to appropriate
gueue - ready, blocked

Select another process for execution

Change of Process State

Update the process control block of the
orocess selected

Update memory-management data
structures

Restore context of the selected process

Execution of the Operating
System

Nonprocess Kernel
execute kernel outside of any process

operating system code is executed as a separate
entity that operates in privileged mode

Execution Within User Processes

operating system software within the context of a
user process
a process switch is not performed, just a mode switch within
the same process
process executes in privileged mode when executing
operating system code

Process
Identification

Processor State Process Control
Information Block

Process Control
Information

LUser Stack

Privaie User
Address Space
(Programs, Data)

Kernel Stack

Shared Address
Space

LR
o o o o o o

Figure 3.15 Process Image: Operating System
Executes Within User Space

Execution of the Operating
System

Process-Based Operating System

major kernel functions are separate user
processes

modular design and clean interfaces
useful in multi-processor or multi-computer
environment

naturally implements client-server computing

UNIX Process States

Tzer Eunning
Eemel Eunning
Eeady to Eun, 1n Memory

Agleep in Memory

Eeady to Bun, Swapped

cleeping, Swapped

Preempted

Created

Zombie

Ezxecuting in user mode.
Ezxecuting in kernel mode.
Eeady to run as soon as the kernel schedules 1t

Tnable to execute until an event occurs; process 18 10 main
memory (ablocked state).

Process iz ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process 15 awaiting an event and has been swapped to
secondary storage (a blocked state).

Process 1s returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process 15 newly created and not vet ready to run.

Process no longer exists, but it leaves a record for its parent
process to collect

fork

not enowgh memory
(swapping system only)

system call,
interrupt

interrupt, akenp

interrupt return

swap out

Figure 3.16 UNIX Process State Transition Diagram

