
Threads, SMP, and
Microkernels

Chapter 4

Contents

?Processes and threads
?Symmetric multiprocessing
?Microkernels
?Window 2000 thread and SMP

management
?Solaris thread and SMP management
?Linux process and thread management

Processes of yesterday

?Unit of resource ownership
?process is allocated a virtual address space to hold

the process image

?Unit of dispatching
?scheduled and dispatched by the OS
?execution may be interleaved with other processes

?These two characteristics are treated
independently by today’s operating system

Processes of today

?Process or task
?unit of resource ownership
?virtual address space, main memory, I/O

devices, and files

?Thread or light weight process
?unit of dispatching
?scheduled and dispatched by the OS

Multithreading

?Refers to the ability of an OS to support
multiple threads of execution within a
single process
?MS-DOS supports a single user process

and a single thread
?UNIX supports multiple user processes

but only supports one thread per process
?Windows 2000, Solaris, Linux, Mach, and

OS/2 support multiple threads

Processes in Multithreaded
environment

?A process is the unit of resource allocation
and a unit of protection
?have a virtual address space that holds the

process image
?protected access to processors, other

processes, files, and I/O resources
?Per Process Items
?address space, global variable, open files, child

processes, timers, signals, semaphores, account

Threads

?Within a process, there may be one or
more threads, each with the followings
?thread execution state(running, ready,...)
?saved thread context
?program counter, stack, register set, child threads,

memory for local variables

?access to the memory and resources of its
process
?all threads of a process share this

Benefits of Threads

?Takes less time to create a new thread than a
process
?no need to allocate a virtual address space

?Less time to terminate a thread than a process
?Less time to switch between two threads within

the same process
?Since threads within the same process share

memory and files, they can communicate with
each other without invoking the kernel

Uses of Threads in a Single-
User Multiprocessing System
?Foreground and background work
?one thread displays menus and read user input
?another thread executes user commands

?Asynchronous elements in the program can
be implemented as threads
?Speed execution
?on a multiprocessor system, multiple threads

from the same process may be able to execute
simultaneously

?Modular program structure

Threads

?Actions that affect all of the threads in a
process
?Suspending a process involves suspending all

threads of the process since all threads share
the same address space
?Termination of a process terminates all

threads within that process

Thread States

?Operations associated with a change in
thread state
?Spawn
?a thread within a process may spawn another

thread within the same process

?Block
?Unblock
?Finish
?Deallocate register context and stacks

Remote Procedure Call
Using Threads

Remote Procedure Call
Using Threads

Implementation of Threads

?User-level threads(ULTs)
?Kernel-level threads(KLTs)
?also referred to as kernel-supported threads

or lightweight processes

?Combined approaches

User-Level Threads

?All thread management is done by the
application
?kernel is not aware of the existence of

threads

?Advantages of ULTs
?thread switching does not require kernel

mode privileges
?scheduling is application specific
?ULTs can run on any OS

Figure 4.7 Examples of the relationship between User-level thread states and process states

User-Level Threads

?Disadvantages of ULTs
?when a thread is blocked, all of the threads

within that process are blocked
?cannot take advantage of multiprocessing
?kernel assigns one process to only one processor

at a time

Kernel-Level Threads

?Windows 2000 and OS/2 are examples of
this approach
?Kernel maintains the context information

for the process and the threads
?Scheduling by the kernel is done on a

thread basis

Combined Approaches for
Threads

?Example is Solaris
?Thread creation done in the user space
?as is bulk of scheduling and synchronization

?Multiple ULTs from a single application
are mapped onto some(smaller or equal)
number of KLTs

Relationship Between
Threads and Processes

Threads:Processes Description Example Systems

1:1 Each thread of execution is a
unique process with its own
address space and resources.

Traditional UNIX
implementations

M:1 A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

Windows NT, Solaris, Linux
OS/2, OS/390, MACH

Relationship Between
Threads and Processes

Threads:Process Description Example Systems

1:M A thread may migrate from one
process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Ra (Clouds), Emerald

M:M Combines attributes of M:1
and 1:M cases

TRIX

Categories of Computer
Systems(by Flynn)

?Single Instruction Single Data (SISD)
?single processor executes a single instruction

stream to operate on data stored in a single
memory

?Single Instruction Multiple Data (SIMD)
?one instruction is executed on a different set

of data by the different processors
?vector and array processors

Categories of Computer
Systems

?Multiple Instruction Single Data (MISD)
?a sequence of data is transmitted to a set of

processors, each of which executes a
different instruction sequence. Never
implemented

?Multiple Instruction Multiple Data (MIMD)
?a set of processors simultaneously execute

different instruction sequences on different
data sets

Symmetric Multiprocessing

?Kernel can execute on any processor
?Typically each processor does self-

scheduling from the pool of available
processes or threads

Multiprocessor Operating
System Design Considerations

?Simultaneous concurrent processes or
threads
?kernel routines need to be reentrant

?Scheduling
?may be performed by any processor

?Synchronization
?Memory Management
?Reliability and Fault Tolerance

Microkernel
?Small operating system core
?Contains only essential operating systems

functions
?Many services traditionally included in the

operating system are now external subsystems
?device drivers
?file systems
?virtual memory manager
?windowing system
?security services

Benefits of a Microkernel
Organization

?Uniform interface on request made by a
process
?all services are provided by means of

message passing
?Extensibility
?allows the addition of new services

?Flexibility
?not only can new features be added to OS,

but existing features can be subtracted

Benefits of a Microkernel
Organization

?Portability
?almost all processor-specific code is in the

microkernel
?changes needed to port the system to a new

processor are fewer and tend to be arranged in
logical groupings

?Reliability
?modular design
?small microkernel can be rigorously tested

Benefits of Microkernel
Organization

?Distributed system support
?message can be sent without knowing what

the target machine is

?Object-oriented operating system
?components are objects with clearly defined

interfaces that can be interconnected to form
software

Microkernel Design

?Functions that must be included
?Low-level memory management
?mapping each virtual page to a physical page

frame

?Inter-process communication
?message is the basic form
?message passing between separate processes

involves memory-to-memory copying
?current research on thread-based IPC and memory

sharing scheme

?I/O and interrupt management

Windows 2000 Processes

?Implemented as objects
?An executable process may contain one or

more threads
?Both process and thread objects have

built-in synchronization capabilities

Process and its Resources

?Security access token
?used to validate the user’s ability to access

secured objects

?Virtual address space
?a series of blocks

?Object table
?have handles to other objects known to this

process
?one handle exists for each thread contained

in this object

Windows 2000
Process Object

Windows 2000
Thread Object

Multithreading

?Threads in different processes may
execute concurrently
?Multiple threads within the same process

may be allocated to separate processors
and execute concurrently
?Threads in different processes can

exchange information through shared
memory that has been set up between
the two processes

Windows 2000
Thread States

?Ready
?Standby : selected to run next
?Running
?Waiting : blocked
?Transition : ready to run but the

resources are not available(e.g: stack may
be paged out of memory)
?Terminated

Solaris

?Thread-related concepts used by Solaris
?Process
?includes the user’s address space, stack, and

process control block

?User-level threads
?implemented through a threads library

?Lightweight processes
?can be viewed as a mapping between ULTs and

kernel threads

?Kernel threads

Solaris Thread Execution

?Events of some transitions
?Synchronization
?invoke a concurrency action and go into the

sleeping state

?Suspension
?go into the stopped state

?Preemption
?go into the runnable state

?Yielding
?yield to another runnable thread

Linux Process

?State
?Scheduling information
?Identifiers
?Interprocess communication : SVR4 is supported
?Links
?Times and timers
?File system
?Virtual memory
?Processor-specific context

Linux States of a Process
?Running
?Interruptable
?blocked state

?Uninterruptable
?another blocked state, but will not accept any

signals

?Stopped
?halted, and can only resume by positive

action from another process

?Zombie

