Threads, SMP, and
Microkernels

Chapter 4

Contents

Processes and threads
Symmetric multiprocessing

Microkernels

Window 2000 thread and SMP
management

Solaris thread and SMP management
Linux process and thread management

Processes of yesterday

Unit of resource ownership

process is allocated a virtual address space to hold
the process image

Unit of dispatching
scheduled and dispatched by the OS
execution may be interleaved with other processes

These two characteristics are treated
Independently by today’s operating system

Processes of today

Process or task
unit of resource ownership

virtual address space, main memory, 1/0
devices, and files

Thread or light weight process
unit of dispatching
scheduled and dispatched by the OS

Multithreading

Refers to the ablility of an OS to support
multiple threads of execution within a
single process

MS-DOS supports a single user process
and a single thread

UNIX supports multiple user processes
but only supports one thread per process

Windows 2000, Solaris, Linux, Mach, and
0OS/2 support multiple threads

One process
one threacd

one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

S = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Processes In Multithreaded
environment

A process Is the unit of resource allocation
and a unit of protection

nave a virtual address space that holds the
orocess image

protected access to processors, other
nrocesses, files, and 1/0 resources

Per Process Items

address space, global variable, open files, child
processes, timers, signals, semaphores, account

Threads

Within a process, there may be one or
more threads, each with the followings

thread execution state(running, ready,...)

saved thread context

program counter, stack, register set, child threads,
memory for local variables

access to the memory and resources of Its
process
all threads of a process share this

Single-Threaded

Process Model
Control Stack
EBlock
Liser Kernel
Address Stack
Space

Multithreaded

Process Model
_Thread =~ Thread =~ Thread
| Thread ! Threaa | ! Thread |,
i| Comtrod |! || Controd || || Contred |
| Buock §; 1| Biock | 1| Block |,
| I |
I . | i
| } | } | :
Process | | User || || User i | User |,
| |
Control : Stack | : Stack | : Stack |
Block | | o - :
I I |
| N | i
User I Kernel l : Kernel : : Kernel :
Address | || Stack || || Stack |; 1| Stack |
| I |
Space I | : | : |
e e T e e] g e | e e =l

Figure 4.2 Single Threaded and Multithreaded Process Models

Benefits of Threads

Takes less time to create a new thread than a
process
no need to allocate a virtual address space

Less time to terminate a thread than a process

Less time to switch between two threads within
the same process

Since threads within the same process share
memory and files, they can communicate with
each other without invoking the kernel

Uses of Threads in a Single-
User Multiprocessing System

Foreground and background work
one thread displays menus and read user input
another thread executes user commands

Asynchronous elements in the program can
be implemented as threads

Speed execution

on a multiprocessor system, multiple threads

from the same process may be able to execute
simultaneously

Modular program structure

Threads

Actions that affect all of the threads in a
process
Suspending a process involves suspending all

threads of the process since all threads share
the same address space

Termination of a process terminates all
threads within that process

Thread States

Operations associated with a change In
thread state

Spawn

a thread within a process may spawn another
thread within the same process

Block
Unblock
Finish
Deallocate register context and stacks

Remote Procedure Call
Using Threads

Time >
RPC RPC
Request Request

Process 1 TN ITITr,. FTTrrisyy

{a) RPC Usimg Single Thread

LA Blocked, waiting for response to RPC
Sownn Blocked, waiting for processor, which is in use by Thread B
B Running

Figure 4.3 Remote Procedure Call (RPC) Using Threads

Remote Procedure Call
Using Threads

RPC
Request

Thread A (Process 1) CELISIS SIS

A

LS

Gervep

(b} RPC Using One Thread per Server (on a aniprocessor)

Thread B (Process 1)

RPC
Request

Blocked, waiting for response to RPC
Cannn Blocked, waiting for processor, which is in use by Thread B
B Running

Figure 4.3 Remote Procedure Call (RPC) Using Threads

Time 2

/O Request Time quantum
request complete expires

Thread A (Process 1) % |

Thread B (Process 1) [1N |

M

Thread C (Process 2) Time quantum [
expires /'
Process
created
bSSSNd Blocked [1 Ready I
Running

Figure 4.4 Multithreading Example on a Uniprocessor

Implementation of Threads

User-level threads(ULTSs)

Kernel-level threads(KLTSs)

also referred to as kernel-supported threads
or lightweight processes

Combined approaches

Threads User User Threads User
Library Space Space Library Space
Kernel Kernel Kernel

®

Space

P (®) (@

s Poure user-level {b Pure kerne l-level {ey Combined

s Lser-level thread @ Kerne ke vel thread @ Process

Figure 4.6 User-Level and Kernel-Level Threads

User-Level Threads

All thread management is done by the
application

kernel is not aware of the existence of
threads

Advantages of ULTs

thread switching does not require kernel
mode privileges

scheduling Is application specific
ULTs can run on any OS

Figure4.7 Examplesof therelationship between User-level thread states and process states

User-Level Threads

Disadvantages of ULTs

when a thread is blocked, all of the threads
within that process are blocked

cannot take advantage of multiprocessing

kernel assigns one process to only one processor
at a time

Kernel-Level Threads

Windows 2000 and OS/2 are examples of
this approach

Kernel maintains the context information
for the process and the threads

Scheduling by the kernel is done on a
thread basis

Combined Approaches for
Threads

Example is Solaris
Thread creation done in the user space
as iIs bulk of scheduling and synchronization

Multiple ULTs from a single application
are mapped onto some(smaller or equal)

number of KLTs

Relationship Between
Threads and Processes

Threads: Processes

Description

Example Systems

1:1

Each thread of execution isa
unique process with its own
addr ess space and resour ces.

A process definesan address
space and dynamic resour ce
ownership. Multiple threads
may be created and executed
within that process.

Traditional UNIX
implementations

Windows NT, Solaris, Linux
0S/2, 0S/390, MACH

Relationship Between
Threads and Processes

Threads:Process Description Example Systems

1:M A thread may migrate from one Ra (Clouds), Emerald
process environment to
another. Thisallowsathread
to be easily moved among
distinct systems.

M:M Combines attributes of M:1 TRIX
and 1:M cases

Categories of Computer
Systems(by Flynn)

Single Instruction Single Data (SISD)

single processor executes a single instruction
stream to operate on data stored In a single
memory

Single Instruction Multiple Data (SIMD)

one instruction iIs executed on a different set
of data by the different processors

vector and array processors

Categories of Computer
Systems

Multiple Instruction Single Data (MISD)

a seguence of data is transmitted to a set of
processors, each of which executes a
different instruction sequence. Never
Implemented

Multiple Instruction Multiple Data (MIMD)

a set of processors simultaneously execute
different instruction sequences on different
data sets

Parallel Processor

/\

SIMD MIMD
(single instruction (multiple instruction
multiple data stream) multiple data stream|
Shared-Memory Distributed-Memory
(tightly coupled) (loosely coupled)
Master/Slave Symmeftric Clusters
Multiprocessors
(SMP)

Figure 4.7 Parallel Processor Architectures

Symmetric Multiprocessing

Kernel can execute on any processor

Typically each processor does self-
scheduling from the pool of available
processes or threads

Vo
Subsylem

o
Adapter

Vo
Adapter

Figure 4.9 Symmetric Multiprocessor Organization

Multiprocessor Operating
System Design Considerations

Simultaneous concurrent processes or
threads

kernel routines need to be reentrant

Scheduling
may be performed by any processor

Synchronization
Memory Management
Reliability and Fault Tolerance

Microkernel

Small operating system core

Contains only essential operating systems
functions

Many services traditionally included in the
operating system are now external subsystems
device drivers
file systems
virtual memory manager
windowing system
security services

User
Mode

Kernel
Mode

Users

File System

Interprocess Communication

/O and Device Management

Virtual Memory

Primitive Process Management

(a) Layered kernel

User
Mode

Kernel
Mode

HARDWARE

(b) Microkernel

Figure 4.10 Kernel Architecture

Benefits of a Microkernel
Organization

Uniform interface on request made by a
process

all services are provided by means of
message passing

Extensibility
allows the addition of new services
Flexibility

not only can new features be added to OS,
but existing features can be subtracted

Benefits of a Microkernel
Organization

Portability

almost all processor-specific code is in the
microkernel

changes needed to port the system to a new
processor are fewer and tend to be arranged In
logical groupings

Reliability
modular design
small microkernel can be rigorously tested

Benefits of Microkernel
Organization

Distributed system support

message can be sent without knowing what
the target machine is

Object-oriented operating system

components are objects with clearly defined
Interfaces that can be interconnected to form
software

Microkernel Design

Functions that must be included

Low-level memory management
mapping each virtual page to a physical page
frame

Inter-process communication
message is the basic form

message passing between separate processes
Involves memory-to-memory copying
current research on thread-based IPC and memory
sharing scheme

/0 and interrupt management

Windows 2000 Processes

Implemented as objects

An executable process may contain one or
more threads

Both process and thread objects have
built-in synchronization capabilities

Process and 1ts Resources

Security access token

used to validate the user’s ability to access
secured objects

Virtual address space
a series of blocks

Object table

have handles to other objects known to this
process

one handle exists for each thread contained
In this object

Access
token

Virtual address space description

Process —- —.1 —-

Avallable
Object Table ohjects
b
Handlel F
| 1
| 1
Handle2 Eoo
i
Handle3 L

L A

Figure 4.12 Windows 2(0{) Process and Its Resources

Windows 2000
Process Object

Ohject Type

Ohbject Body
Altltributes

Services

Process

Process 1D

Security Descriplor

Base priorily

Default processor affinity
Chuota limits

Execution time

10 counters

WM operation counters
Exceptionfdebugping ports
Exil slafus

Create pmcess

Open process

Query process information
Sel process information
Currenl process
Terminale process

(@) Process object

Windows 2000
Thread Object

Object Type

Ohbject Body
Attributes

Services

Thread

Thread 1D

Thread context
Dynamic priogty
Base priodly

Thread processor affinity
Thread execution ime
Alert stalus
sSuspension count
Impersonation oken
Termination port
Thread exil status

Create thread

Open thread

Query thread information
¢l thread information
Current thread
Temminate thread

(et conlexd

wel conlext

sSuspend

Resume

Alent thread

Test thread aler
Regizier lermination port

ih) Thread object

Multithreading

Threads In different processes may
execute concurrently

Multiple threads within the same process
may be allocated to separate processors
and execute concurrently

Threads In different processes can
exchange information through shared
memory that has been set up between
the two processes

Windows 2000
Thread States

Ready

Standby : selected to run next
Running

Waiting : blocked

Transition : ready to run but the
resources are not available(e.g: stack may
be paged out of memory)

Terminated

Runnable

Pick to Standby —~
Run =witch
Preempted
Ready = Running
[\ /
Resource Unblock/ Resume Terminate
Avallablle / urce Avallabile Block/
Suspend Y
. Transition - Waiting Terminated

LUnblock
Resource Not A vallablle

Not Runnable

Figure 4.14 Windows 2000 Thread States

Solaris

Thread-related concepts used by Solaris

Process

Includes the user’s address space, stack, and
process control block

User-level threads
Implemented through a threads library

Lightwelght processes

can be viewed as a mapping between ULTs and
kernel threads

Kernel threads

Frocess 1 Frocess 2 Process 3 Process 4 Process 5

SR R A I RS | R N
\/ | INJ~ e o

Threads

ui@ 0 = DO e 1 e

O Q) @ OO ©

rl 2] 2

S User-level thread @ Kernel-level thread @ Light-weight Process E Processor

Kernel

Hardware

Figure 4.15 Solaris Multithreaded Architecture Example

UNIX Process Structure Solaris Process Structure

Process 1D Process 1D
User IDs LUser 1IDs
Signal Dispatch Tahle Signal Dispatch Table
Memary Map Memary Map
T £y
Sl Wlisk
@.ﬂm

Froniy Proniy
BT Rl Wik
islers Hegisters
STAC K SIACK
FEY I'RE

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]

User-Level Threads

Runnable
Preempt
Stop
Stopped =% Sleeping
Dispaich
L Sleep
= Active =
r#".— h“‘.h'ﬁ-
"‘*d“ ﬂ-‘_“
-i'" ‘lll.I|I
"'-ﬂ" “\““
f“ ‘H-
- L

Running
Wakeup
Runnable Stopped
Blocking
System
Call
' Continue

Blocked Stop

Lightweight Processes

Figure 4.17 Solaris User-Level Thread and LWP States

Solaris Thread Execution

Events of some transitions

Synchronization

Invoke a concurrency action and go into the
sleeping state

Suspension
go into the stopped state

Preemption

go into the runnable state
Yielding

yield to another runnable thread

L InuX Process

State

Scheduling information

Identifiers

Interprocess communication : SVR4 is supported
Links

Times and timers

File system

Virtual memory

Processor-specific context

Linux States of a Process

Running

Interruptable
blocked state

Uninterruptable

another blocked state, but will not accept any
signals

Stopped

halted, and can only resume by positive
action from another process

Zombie

slgnal signal

Figure 4.18 Linux Process/Thread Model

