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Central theme of OS design

?Multiprogramming
?management of multiple processes within a 

uniprocessor system

?Multiprocessing
?management of multiple processes within a 

multiprocessor system

?Distributed processing
?management of multiple processes executing 

on multiple, distributed computer systems



Concurrency arises in ….

?Multiple applications at the same time
?Multiprogramming

?Structured application
?Application can be a set of concurrent 

processes

?OS structure
?Operating systems are often implemented as 

a set of processes or threads



Difficulties with 
Concurrency

?Sharing of global resources
?if two processes make use of the shared 

variable, then the order of access is critical

?Management of allocation of resources
?may lead to a deadlock

?Programming errors difficult to locate
?results are typically not deterministic and 

reproducible



An Example(uniprocessor)

void echo()
{

chin = getchar();
chout = chin;
putchar(chout); 

}



An Example(multiprocessor)

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .



Lesson to be learned

?It is necessary to protect the shared 
global variables
?the only way to do that is to control the code 

that accesses the variable
?only one process at a time may access the 

shared variable



Operating System 
Concerns

?Keep track of active processes
?Allocate and deallocate resources
?processor time
?memory
?files
?I/O devices

?Protect data and resources of each process
?Results of a process must be independent of the 

speed at which the execution is carried out 
relative to the speed of other concurrent 
processes



Process Interaction

?Processes unaware of each other
?independent processes that are not intended 

to work together

?Processes indirectly aware of each other
?processes are not necessarily aware of each 

other but they share access to some object

?Process directly aware of each other
?processes are able to communicate directly 

with each other



Competition Among 
Processes for Resources

?Execution of one process may affect the 
behavior of competing processes
?If two processes wish access to a single 

resource, one process will be allocated the 
resource and the other will have to wait

?It is possible that the blocked process will 
never get access to the resource and 
never terminate



Potential Problems

?Mutual Exclusion
?critical sections
?portion of a program that accesses the shared 

resource
?only one process at a time is allowed in it

?example
?only one process at a time is allowed to send command 

to the printer

?Deadlock
?Starvation



Cooperation Among 
Processes by Sharing

?Processes use and update shared data 
such as shared variables, files, and data 
bases
?Writing must be mutually exclusive

?Critical sections are used to provide data 
integrity



P1:
a = a +1;
b = b + 1;

P2:
b = 2 * b;
a = 2 * a;

a = a +1;
b = 2 * b;
b = b + 1;
a = 2 * a;



/* program mutualexclusion */
const int n = /* number of processes */ ;

void P(int i)
{

while (true)
{

entercritical (i);
/* critical section */;
exitcritical (i);
/* remainder */;

}
}
void main( )
{

parbegin (P(R1 ), P(R2 ), . . ., P(Rn));
}

Figure 5.1 Mutual Exclusion



Cooperation Among Processes 
by Communication

?Communication provides a way to synchronize, 
or coordinate the various activities
?Possible to have deadlock
?each process waiting for a message from the other 

process

?Possible to have starvation
?two processes sending message to each other 

repeatedly while another process is waiting



Requirements for Mutual 
Exclusion

?Only one process at a time is allowed into 
its critical section
?A process that halts in its non-critical 

section must do so without interfering 
with other processes
?A process requiring access to a critical 

section must not be delayed indefinitely: 
no deadlock or starvation



Requirements for Mutual 
Exclusion

?A process must not be delayed access to 
a critical section when there is no other 
process in it
?No assumptions are made about relative 

process speeds or number of processors
?A process remains inside its critical 

section for a finite time only



Mutual Exclusion: 
Software Approaches

?Dekker’s algorithm
?an algorithm for mutual exclusion for two 

processes

?Let’s develop the solution in stages



Busy-Waiting First Attempt

/* PROCESS 0 /*
•
•
while (turn != 0)

/* do nothing */ ;
/* critical section*/;
turn = 1;
•

/* PROCESS 1 */
•
•
while (turn != 1)

/* do nothing */;
/* critical section*/;
turn = 0;
•



Busy-Waiting First Attempt

?Guarantees mutual exclusion
?Processes must strictly alternate in use of 

their critical sections
?If one process fails, the other process is 

permanently blocked
?Each process should have its own key to the 

critical section so if one process is eliminated, 
the other can still access its critical section



/* PROCESS 0 */
•
•
while (flag[1])

/* do nothing */;
flag[0] = true;
/*critical section*/;
flag[0] = false;
•

/* PROCESS 1 */
•
•
while (flag[0])

/* do nothing */;
flag[1] = true;
/* critical section*/;
flag[1] = false;
•

Busy-Waiting Second 
Attempt



Busy-Waiting Second 
Attempt

?Each process can examine the other’s status but 
cannot alter it
?When a process wants to enter the critical 

section, it checks the other process first
?If no process is in the critical section, it sets its 

status for the critical section
?This method does not guarantee mutual 

exclusion
?Each process can check the flags and then proceed 

to enter the critical section at the same time



/* PROCESS 0 */
•
•
flag[0] = true;
while (flag[1])

/* do nothing */;
/* critical section*/;
flag[0] = false;
•

/* PROCESS 1 */
•
•
flag[1] = true;
while (flag[0])

/* do nothing */;
/* critical section*/;
flag[1] = false;
•

Busy-Waiting Third 
Attempt



Busy-Waiting Third 
Attempt
?Set flag to enter critical section before checking 

other processes
?If another process is in the critical section when 

the flag is set, the process is blocked until the 
other process releases the critical section
?Deadlock is possible when two process set their 

flags to enter the critical section
?Now each process must wait for the other process to 

release the critical section



/* PROCESS 0 */
•
•
flag[0] = true;
while (flag[1])
{

flag[0] = false;
/*delay */;
flag[0] = true;

}
/*critical section*/;
flag[0] = false;
•

/* PROCESS 1 */
•
•
flag[1] = true;
while (flag[0])
{

flag[1] = false;
/*delay */;
flag[1] = true;

}
/* critical section*/;
flag[1] = false;
•

Busy-Waiting Fourth 
Attempt



Busy-Waiting Fourth 
Attempt

?A process sets its flag to indicate its 
desire to enter its critical section but is 
prepared to reset the flag
?Other processes are checked.  If they are 

in the critical region, the flag is reset and 
later set to indicate desire to enter the 
critical region.  This is repeated until the 
process can enter the critical region.



Busy-Waiting Fourth 
Attempt

?It is possible for each process to set their 
flag, check other processes, and reset 
their flags
?this sequence could be extended indefinitely, 

and neither process could enter its critical 
section
?this condition is referred to as livelock



Busy-Waiting Correct 
Solution

?Each process gets a turn at the critical 
section
?If a process wants the critical section, it 

sets its flag and may have to wait for its 
turn



boolean flag [2];
int turn;
void P0( )
{

while (true)
{

flag [0] = true;
while (flag [1])

if (turn == 1)
{

flag [0] = false;
while (turn == 1)
/* do nothing */;
flag [0] = true;

}
/* critical section */;
turn = 1;
flag [0] = false;
/* remainder */;

}
}

void P1( )
{

while (true)
{

flag [1] = true;
while (flag [0])

if (turn == 0)
{

flag [1] = false;
while (turn == 0)
/* do nothing */;

flag [1] = true;
}

/* critical section */;
turn = 0;
flag [1] = false;
/* remainder */;

}
}

void main ( )
{

flag [0] = false;
flag [1] = false;
turn = 1;
parbegin (P0, P1);

}

Busy-Waiting Correct 
Solution(Dekker’s)



boolean flag [2];
int turn;
void P0( )
{

while (true)
{

flag [0] = true;
turn = 1;
while (flag [1] && turn == 1)

/* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

}
}

void P1( )
{

while (true)
{

flag [1] = true;
turn = 0;
while (flag [0] && turn == 0)

/* do nothing */;
/* critical section */;
flag [1] = false;
/* remainder */

}
}

void main( )
{

flag [0] = false;
flag [1] = false;
parbegin (P0, P1);

}

Busy-Waiting Correct 
Solution(Peterson’s)



Mutual Exclusion -
Interrupt Disabling

?A process runs until it invokes an operating 
system service or until it is interrupted
?So disabling interrupts can guarantee mutual 

exclusion
?But processor is limited in its ability to interleave 

programs
?Efficiency of execution could be noticeably degraded

?Not working for multiprocessing
?disabling interrupts on one processor will not 

guarantee mutual exclusion



while(true)
{

/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;

}

Mutual Exclusion -
Interrupt Disabling



Mutual Exclusion - Using
Machine Instructions

?Special Machine Instructions
?Carry out two actions atomically
?performed in a single instruction cycle
?not interrupted in the middle of execution

?Test and Set instruction
?Exchange instruction



Mutual Exclusion - Using
Machine Instructions

?Test and Set Instruction
boolean testset (int i) {

if (i == 0) {
i = 1;
return true;

}
else {

return false;
}

}



Mutual Exclusion - Using
Machine Instructions

?Exchange Instruction
void exchange(int register, 

int memory) {
int temp;
temp = memory;
memory = register;
register = temp;

}



/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int i)
{

while (true)
{

while (!testset (bolt))
/* do nothing */;

/* critical section */;
bolt = 0;
/* remainder */

}
}
void main( )
{

bolt = 0;
parbegin (P(1), P(2), . . . ,P(n));

}
(a) Test and set instruction

/* program mutualexclusion */
int const n = /* number of processes**/;
int bolt;
void P(int i)
{

int keyi;
while (true)
{

keyi = 1;
while (keyi != 0)

exchange (keyi, bolt);
/* critical section */;
exchange (keyi, bolt);
/* remainder */

}
}
void main( )
{

bolt = 0;
parbegin (P(1), P(2), . . ., P(n));

}
(b) Exchange instruction

Figure 5.5 Hardware Support for Mutual Exclusion



Mutual Exclusion - Using 
Machine Instructions

?Advantages
?Applicable to any number of processes on 

either a single processor or multiple 
processors sharing main memory
?It is simple and therefore easy to verify
?It can be used to support multiple critical 

sections



Mutual Exclusion - Using 
Machine Instructions

?Disadvantages
?Busy-waiting consumes processor time
?Starvation is possible when a process leaves 

a critical section and more than one process 
is waiting.  
?Deadlock
?If a low priority process has the critical region and 

a higher priority process preempts, the higher 
priority process will obtain the processor to wait 
for the critical region



Semaphores(by Dijkstra)

?Special variable called a semaphore is 
used for signaling
?to transmit a signal, execute signal(s)
?to receive a signal, execute wait(s)
?If a process is waiting for a signal, it is suspended 

until that signal is sent

?Wait and Signal operations cannot be 
interrupted
?A queue is used to hold processes waiting 

on the semaphore



Semaphores(by Dijkstra)

?Operations defined on a semaphore
?semaphore may be initialized to a 

nonnegative value
?wait operation decrements the semaphore 

value.  If the value becomes negative, then 
the process executing the wait is blocked
?signal operation increments the semaphore 

value.  If the value is not positive, then a 
process blocked by a wait operation is 
unblocked



struct semaphore {
int count;
queueType queue;

}
void wait(semaphore s)
{

s.count--;
if (s.count < 0)
{

place this process in s.queue;
block this process

}
}
void signal(semaphore s)
{

s.count++;
if (s.count <= 0)
{

remove a process P from s.queue;
place process P on ready list;

}
}
Figure 5.6 A Definition of Semaphore Primitives



struct binary_semaphore {
enum (zero, one) value;
queueType queue;

};
void waitB(binary_semaphore s)
{

if (s.value == 1)
s.value = 0;

else
{

place this process in s.queue;
block this process;

}
}
void signalB(semaphore s)
{

if (s.queue.is_empty())
s.value = 1;

else
{

remove a process P from s.queue;
place process P on ready list;

}
}
Figure 5.7 A Definition of Binary Semaphore Primitives



/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int i)
{

while (true)
{

wait(s);
/* critical section */;
signal(s);
/* remainder */;

}
}
void main()
{

parbegin (P(1), P(2), . . ., P(n));
}
Figure 5.9 Mutual Exclusion Using Semaphores



Figure 5.10  Processes accessing shared data protected by a semaphore



Producer/Consumer 
Problem

?One or more producers are generating data and 
placing these in a buffer
?A single consumer is taking items out of the 

buffer one at time
?Only one producer or consumer may access the 

buffer at any one time
?Two semaphores are used
? one to represent the amount of items in the buffer
? one to signal that it is all right to use the buffer



Producer

producer:
while (true) {
/* produce item v */
b[in] = v;
in++; 

}



Consumer

consumer:
while (true) {
while (in <= out) 

/*do  nothing */;
w = b[out];
out++; 
/* consume item w */

}



Infinite Buffer



/* program producerconsumer */
int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;
void producer()
{

while (true)
{

produce();
waitB(s);
append();
n++;
if (n==1)

signalB(delay);
signalB(s);

}
}

void consumer()
{

waitB(delay);
while (true)
{

waitB(s);
take();
n--;
signalB(s);
consume();
if (n==0)

waitB(delay);
}

}
void main()
{

n = 0;
parbegin (producer, consumer);

}

Figure 5.12 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores





/* program producerconsumer */
int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;
void producer()
{

while (true)
{

produce();
waitB(s);
append();
n++;
if (n==1) signalB(delay);
signalB(s);

}
}

void consumer()
{

int m; /* a local variable */
waitB(delay);
while (true)
{

waitB(s);
take();
n--;
m = n;
signalB(s);
consume();
if (m==0) waitB(delay);

}
}
void main()
{

n = 0;
parbegin (producer, consumer);

}

Figure 5.13 A Correct Solution to the Infinite-Buffer
Producer/Consumer Problem Using Binary Semaphores



/* program producerconsumer */
semaphore n = 0;
semaphore s = 1;
void producer()
{

while (true)
{

produce();
wait(s);
append();
signal(s);
signal(n);

}
}

void consumer()
{

while (true)
{

wait(n);
wait(s);
take();
signal(s);
consume();

}
}
void main()
{

parbegin (producer, consumer);
}

Figure 5.14 A Solution to the Infinite-Buffer Producer/Consumer
Problem Using Semaphores



Producer with Circular 
Buffer

producer:
while (true) {
/* produce item v */
while ((in + 1) % n == out) /* 
do nothing */;
b[in] = v;
in = (in + 1) % n

}



Consumer with Circular 
Buffer

consumer:
while (true) {
while (in == out)

/* do nothing */;
w = b[out];
out = (out + 1) % n;
/* consume item w */

}





/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;
semaphore s = 1;
semaphore n= 0;
semaphore e= sizeofbuffer;
void producer()
{

while (true)
{

produce();
wait(e);
wait(s);
append();
signal(s);
signal(n)

}
}

void consumer()
{

while (true)
{

wait(n);
wait(s);
take();
signal(s);
signal(e);
consume();

}
}
void main()
{

parbegin (producer, consumer);
}

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer
Problem Using Semaphores



Implementation of 
Semaphores

?Wait and Signal should be implemented 
as atomic primitives
?can be implemented as hardware instructions
?software schemes can be used
?this would entail a substantial processing 

overhead

?hardware-supported schemes can be used



wait(s)
{

while (!testset(s.flag))
/* do nothing */;

s.count--;
if (s.count < 0)
{

place this process in s.queue;
block this process (must also set s.flag to 0)

}
else

s.flag = 0;
}
signal(s)
{

while (!testset(s.flag))
/* do nothing */;

s.count++;
if (s.count <= 0)
{

remove a process P from s.queue;
place process P on ready list

}
s.flag = 0;

}
(a) Testset Instruction

wait(s)
{

inhibit interrupts;
s.count--;
if (s.count < 0)
{

place this process in s.queue;
block this process and allow interrupts

}
else

allow interrupts;
}
signal(s)
{

inhibit interrupts;
s.count++;
if (s.count <= 0)
{

remove a process P from s.queue;
place process P on ready list

}
allow interrupts;

}
(b) Interrupts

Figure 5.17 Two Possible Implementations of Semaphores



Barbershop Problem

?Problem
?3 chairs, 3 barbers, and a waiting area
?fire code limits the total number of customers 

in the shop to 20
?barbershop will eventually process 50 

customers
?a customer will not enter the shop if it is filled 

to capacity



?once inside, the customer takes a seat on the 
sofa or stands if the sofa is filled
?when a barber is free, the customer that has 

been on the sofa the longest is served and if 
there are any standing customers, the one 
that has been in the shop the longest takes a 
seat on the sofa
?when a customer’s haircut is finished, any 

barber can accept payment, but because 
there is only one cash register, payment is 
accepted for one customer at a time





/* program barbershop1 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3;
semaphore coord = 3;
semaphore cust_ready = 0, finished = 0, leave_b_chair = 0, payment= 0, receipt = 0;
void customer ()
{

wait(max_capacity);
enter_shop();
wait(sofa);
sit_on_sofa();
wait(barber_chair);
get_up_from_sofa();
signal(sofa);
sit_in_barber_chair;
signal(cust_ready);
wait(finished);
leave_barber_chair();
signal(leave_b_chair);
pay();
signal(payment);
wait(receipt);
exit_shop();
signal(max_capacity)

}

void barber()
{

while (true)
{

wait(cust_ready);
wait(coord);
cut_hair();
signal(coord);
signal(finished);
wait(leave_b_chair);
signal(barber_chair);

}
}

void cashier()
{

while (true)
{

wait(payment);
wait(coord);
accept_pay();
signal(coord);
signal(receipt);

}
}

void main()
{
parbegin (customer, . . . 50 times, . . . customer, barber, barber, barber, cashier);
}

Figure 5.19 An Unfair Barbershop



/* program barbershop2 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3, coord = 3;
semaphore mutex1 = 1, mutex2 = 1;
semaphore cust_ready = 0, leave_b_chair = 0, payment = 0, receipt = 0;
semaphore finished [50] = {0};
int count;
void customer()
{

int custnr;
wait(max_capacity);
enter_shop();
wait(mutex1);
count++;
custnr = count;
signal(mutex1);
wait(sofa);
sit_on_sofa();
wait(barber_chair);
get_up_from_sofa();
signal(sofa);
sit_in_barber_chair();
wait(mutex2);
enqueue1(custnr);
signal(cust_ready);
signal(mutex2);
wait(finished[custnr]);
leave_barber_chair();
signal(leave_b_chair);
pay();
signal(payment);
wait(receipt);
exit_shop();
signal(max_capacity)

}

void barber()
{

int b_cust;
while (true)
{

wait(cust_ready);
wait(mutex2);
dequeue1(b_cust);
signal(mutex2);
wait(coord);
cut_hair();
signal(coord);
signal(finished[b_cust]);
wait(leave_b_chair);
signal(barber_chair);

}
}

void cashier()
{

while (true)
{

wait(payment);
wait(coord);
accept_pay();
signal(coord);
signal(receipt);

}
}

void main()
{

count := 0;
parbegin (customer, . . . 50 times, . . . customer, barber, barber, barber,

cashier);
}

Figure 5.20 A Fair Barbershop



Monitor(with signal)
?Problems using semaphores
?may be difficult to produce a correct program
?operations are scattered throughout a program

?Monitor is a programming language construct
?Local data variables are accessible only by the 

monitor
?Process enters monitor by invoking one of its 

procedures
?Only one process may be executing in the 

monitor at a time



Monitor(with signal)

?Operations for synchronization
?cwait(c)
?suspend execution of the calling process on 

condition c

?csignal(c)
?resume execution of some process suspended 

after a cwait on the same condition.  If there are 
several such processes, choose one of them; if 
there is no such process, do nothing





Monitor(with signal)

?What if the csignal does not occur at the 
end of the procedure
?process issuing the signal is suspended to 

make the monitor available and placed in a 
queue until the monitor is free
?urgent queue

?Concurrent Pascal requires that csignal only 
appears as the last operation executed by a 
monitor procedure



/* program producerconsumer */
monitor boundedbuffer;
char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
int notfull, notempty; /* for synchronization */
void append (char x)
{

if (count == N)
cwait(notfull);                          /* buffer is full; avoid overflow */

buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;                                        /* one more item in buffer */
csignal(notempty); /* resume any waiting consumer */

}
void take (char x)
{

if (count == 0)
cwait(notempty);                      /* buffer is empty; avoid underflow */

x = buffer[nextout];
nextout = (nextout + 1) % N;
count--;                                          /* one fewer item in buffer */
csignal(notfull);                             /* resume any waiting producer */

}
{ /* monitor body */

nextin = 0; nextout = 0; count = 0; /* buffer initially empty */
}

Figure 5.22 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor



void producer()
char x;
{

while (true)
{

produce(x);
append(x);

}
}
void consumer()
{

char x;
while (true)
{

take(x);
consume(x);

}
}
void main()
{

parbegin (producer, consumer);
}

Figure 5.22 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor



Monitor(with notify and 
broadcast)

?Drawbacks of Hoare’s monitors
?if the process issuing csignal has not finished 

with the monitor, then two additional process 
switches are required
?process scheduling associated with a signal 

must be perfectly reliable
?when a csignal is issued, a process from the 

corresponding condition queue must be activated 
immediately and the scheduler must ensure that 
no other process enters the monitor before 
activation



Monitor(with notify and 
broadcast)

?Lampson/Redell Monitor
?cnotify instead of csignal
?cnotify(x) causes the x condition queue to be 

notified, signaling process continues to execute
?the process at the head of the condition queue 

will be resumed at some convenient future time 
when the monitor is available
?because there is no guarantee that some other process 

will not enter the monitor before the waiting process, 
the waiting process must recheck the condition



Monitor(with notify and 
broadcast)

?pros and cons
?at least one extra evaluation of the condition variable
?no extra process switches
?no constraints on when the waiting process must run 

after a cnotify

?cbroadcast
?causes all processes waiting on a condition to be 

placed in Ready state
?convenient when a process does not know how 

many other processes should be reactivated



void append (char x)
{

while(count == N)
cwait(notfull);                        /* buffer is full; avoid overflow */

buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;                                      /* one more item in buffer */
cnotify(notempty);                       /* notify any waiting consumer */

}
void take (char x)
{

while(count == 0)
cwait(notempty);                    /* buffer is empty; avoid underflow */

x = buffer[nextout];
nextout = (nextout + 1) % N;
count--;                                        /* one fewer item in buffer */
cnotify(notfull);                           /* notify any waiting producer */

}

Figure 5.23 Bounded Buffer Monitor Code



Message Passing

?Requirements for process interaction
?synchronization
?communication

?Message passing can provide both of the 
above functions

send(destination, message)
receive(source, message)





Message Passing -
Synchronization

?Sender and receiver may or may not be 
blocking (waiting for message)
?Blocking send, blocking receive
?both sender and receiver are blocked until 

message is delivered
?called a rendezvous



Message Passing -
Synchronization

?Nonblocking send, blocking receive
?sender continues processing such as sending 

messages as quickly as possible
?receiver is blocked until the requested 

message arrives

?Nonblocking send, nonblocking receive
?neither party is required to wait



Addressing

?Direct addressing
?send primitive includes a specific identifier of 

the destination process
?receive primitive could know ahead of time 

from which process a message is expected
?receive primitive could use source parameter 

to return a value when the receive operation 
has been performed



Addressing

?Indirect addressing
?messages are sent to a shared data structure 

consisting of queues
?queues are called mailboxes
?one process sends a message to the mailbox 

and the other process picks up the message 
from the mailbox





Message Format



/* program mutualexclusion */
const int n = /* number of processes */;
void P(int i)
{

message msg;
while (true)
{

receive (mutex, msg);
/* critical section */;
send (mutex, msg);
/* remainder */;

}
}
void main()
{

create_mailbox (mutex);
send (mutex, null);
parbegin (P(1), P(2), . . ., P(n));

}

Figure 5.26 Mutual Exclusion Using Messages



const int
capacity = /* buffering capacity */ ;
null = /* empty message */ ;

int i;
void producer()
{     message pmsg;

while (true)
{

receive (mayproduce, pmsg);
pmsg = produce();
send (mayconsume, pmsg);

}
}
void consumer()
{     message cmsg;

while (true)
{

receive (mayconsume, cmsg);
consume (cmsg);
send (mayproduce, null);

}
}

void main()
{

create_mailbox (mayproduce);
create_mailbox (mayconsume);
for (int i = 1; i <= capacity; i++)

send (mayproduce, null);
parbegin (producer, consumer);

}

Figure 5.27 A Solution to the Bounded-Buffer Producer/Consumer
Problem Using Messages



Readers/Writers Problem

?Readers have priority
?Any number of readers may simultaneously 

read the file
?when there is already at least one reader reading, 

subsequent readers need not wait before entering

?Only one writer at a time may write to the file
?If a writer is writing to the file, no reader may 

read it



Readers/Writers Problem

?Semaphores and variables
?wsem : enforce mutual exclusion
?readcount : keep track of the number of readers



/* program readersandwriters */
int readcount ;
semaphore x = 1, wsem = 1;
void reader()
{

while (true)
{

wait (x);
readcount++;
if (readcount == 1)

wait (wsem);
signal (x);
READUNIT();
wait (x);
readcount--;
if (readcount == 0)

signal (wsem);
signal (x);

}
}

void writer()
{

while (true)
{

wait (wsem);
WRITEUNIT();
signal (wsem);

}
}
void main()
{

readcount = 0;
parbegin (reader, writer);

}

Figure 5.28 A Solution to the Readers/Writers Problem Using
Semaphores: Readers Have Priority



Readers/Writers Problem

?Writers have priority
?no new readers are allowed access to the 

data area once at least one writer has 
declared a desire to write
?additional semaphores and variables
?rsem : inhibits all readers while there is at least 

one writer desiring access
?writecount : control the setting of rsem
?y : control the updating of writecount



/* program readersandwriters */
int readcount, writecount;
semaphore x = 1, y = 1, z = 1, wsem = 1, rsem = 1;
void reader()
{

while (true)
{

wait (z);
wait (rsem);
wait (x);
readcount++;
if (readcount == 1)
{

wait (wsem);
}
signal (x);
signal (rsem);
signal (z);
READUNIT();
wait (x);
readcount--;
if (readcount == 0)

signal (wsem);
signal (x);

}
}

void writer ()
{

while (true)
{

wait (y);
writecount++;
if (writecount == 1)

wait (rsem);
signal (y);
wait (wsem);
WRITEUNIT();
signal (wsem);
wait (y);
writecount--;
if (writecount == 0)

signal (rsem);
signal (y);

}
}
void main()
{

readcount = writecount = 0;
parbegin (reader, writer);

}

Figure 5. 29 A Solution to the Readers/Writers Problem Using Semaphores: Writers
Have Priority


