
Concurrency: Mutual
Exclusion and
Synchronization

Chapter 5

Contents

?Principles of concurrency
?Mutual exclusion : software approach
?Mutual exclusion : hardware approach
?Semaphore
?Monitors
?Message passing
?Readers/Writers problem

Central theme of OS design

?Multiprogramming
?management of multiple processes within a

uniprocessor system

?Multiprocessing
?management of multiple processes within a

multiprocessor system

?Distributed processing
?management of multiple processes executing

on multiple, distributed computer systems

Concurrency arises in ….

?Multiple applications at the same time
?Multiprogramming

?Structured application
?Application can be a set of concurrent

processes

?OS structure
?Operating systems are often implemented as

a set of processes or threads

Difficulties with
Concurrency

?Sharing of global resources
?if two processes make use of the shared

variable, then the order of access is critical

?Management of allocation of resources
?may lead to a deadlock

?Programming errors difficult to locate
?results are typically not deterministic and

reproducible

An Example(uniprocessor)

void echo()
{

chin = getchar();
chout = chin;
putchar(chout);

}

An Example(multiprocessor)

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

Lesson to be learned

?It is necessary to protect the shared
global variables
?the only way to do that is to control the code

that accesses the variable
?only one process at a time may access the

shared variable

Operating System
Concerns

?Keep track of active processes
?Allocate and deallocate resources
?processor time
?memory
?files
?I/O devices

?Protect data and resources of each process
?Results of a process must be independent of the

speed at which the execution is carried out
relative to the speed of other concurrent
processes

Process Interaction

?Processes unaware of each other
?independent processes that are not intended

to work together

?Processes indirectly aware of each other
?processes are not necessarily aware of each

other but they share access to some object

?Process directly aware of each other
?processes are able to communicate directly

with each other

Competition Among
Processes for Resources

?Execution of one process may affect the
behavior of competing processes
?If two processes wish access to a single

resource, one process will be allocated the
resource and the other will have to wait

?It is possible that the blocked process will
never get access to the resource and
never terminate

Potential Problems

?Mutual Exclusion
?critical sections
?portion of a program that accesses the shared

resource
?only one process at a time is allowed in it

?example
?only one process at a time is allowed to send command

to the printer

?Deadlock
?Starvation

Cooperation Among
Processes by Sharing

?Processes use and update shared data
such as shared variables, files, and data
bases
?Writing must be mutually exclusive

?Critical sections are used to provide data
integrity

P1:
a = a +1;
b = b + 1;

P2:
b = 2 * b;
a = 2 * a;

a = a +1;
b = 2 * b;
b = b + 1;
a = 2 * a;

/* program mutualexclusion */
const int n = /* number of processes */ ;

void P(int i)
{

while (true)
{

entercritical (i);
/* critical section */;
exitcritical (i);
/* remainder */;

}
}
void main()
{

parbegin (P(R1), P(R2), . . ., P(Rn));
}

Figure 5.1 Mutual Exclusion

Cooperation Among Processes
by Communication

?Communication provides a way to synchronize,
or coordinate the various activities
?Possible to have deadlock
?each process waiting for a message from the other

process

?Possible to have starvation
?two processes sending message to each other

repeatedly while another process is waiting

Requirements for Mutual
Exclusion

?Only one process at a time is allowed into
its critical section
?A process that halts in its non-critical

section must do so without interfering
with other processes
?A process requiring access to a critical

section must not be delayed indefinitely:
no deadlock or starvation

Requirements for Mutual
Exclusion

?A process must not be delayed access to
a critical section when there is no other
process in it
?No assumptions are made about relative

process speeds or number of processors
?A process remains inside its critical

section for a finite time only

Mutual Exclusion:
Software Approaches

?Dekker’s algorithm
?an algorithm for mutual exclusion for two

processes

?Let’s develop the solution in stages

Busy-Waiting First Attempt

/* PROCESS 0 /*
•
•
while (turn != 0)

/* do nothing */ ;
/* critical section*/;
turn = 1;
•

/* PROCESS 1 */
•
•
while (turn != 1)

/* do nothing */;
/* critical section*/;
turn = 0;
•

Busy-Waiting First Attempt

?Guarantees mutual exclusion
?Processes must strictly alternate in use of

their critical sections
?If one process fails, the other process is

permanently blocked
?Each process should have its own key to the

critical section so if one process is eliminated,
the other can still access its critical section

/* PROCESS 0 */
•
•
while (flag[1])

/* do nothing */;
flag[0] = true;
/*critical section*/;
flag[0] = false;
•

/* PROCESS 1 */
•
•
while (flag[0])

/* do nothing */;
flag[1] = true;
/* critical section*/;
flag[1] = false;
•

Busy-Waiting Second
Attempt

Busy-Waiting Second
Attempt

?Each process can examine the other’s status but
cannot alter it
?When a process wants to enter the critical

section, it checks the other process first
?If no process is in the critical section, it sets its

status for the critical section
?This method does not guarantee mutual

exclusion
?Each process can check the flags and then proceed

to enter the critical section at the same time

/* PROCESS 0 */
•
•
flag[0] = true;
while (flag[1])

/* do nothing */;
/* critical section*/;
flag[0] = false;
•

/* PROCESS 1 */
•
•
flag[1] = true;
while (flag[0])

/* do nothing */;
/* critical section*/;
flag[1] = false;
•

Busy-Waiting Third
Attempt

Busy-Waiting Third
Attempt
?Set flag to enter critical section before checking

other processes
?If another process is in the critical section when

the flag is set, the process is blocked until the
other process releases the critical section
?Deadlock is possible when two process set their

flags to enter the critical section
?Now each process must wait for the other process to

release the critical section

/* PROCESS 0 */
•
•
flag[0] = true;
while (flag[1])
{

flag[0] = false;
/*delay */;
flag[0] = true;

}
/*critical section*/;
flag[0] = false;
•

/* PROCESS 1 */
•
•
flag[1] = true;
while (flag[0])
{

flag[1] = false;
/*delay */;
flag[1] = true;

}
/* critical section*/;
flag[1] = false;
•

Busy-Waiting Fourth
Attempt

Busy-Waiting Fourth
Attempt

?A process sets its flag to indicate its
desire to enter its critical section but is
prepared to reset the flag
?Other processes are checked. If they are

in the critical region, the flag is reset and
later set to indicate desire to enter the
critical region. This is repeated until the
process can enter the critical region.

Busy-Waiting Fourth
Attempt

?It is possible for each process to set their
flag, check other processes, and reset
their flags
?this sequence could be extended indefinitely,

and neither process could enter its critical
section
?this condition is referred to as livelock

Busy-Waiting Correct
Solution

?Each process gets a turn at the critical
section
?If a process wants the critical section, it

sets its flag and may have to wait for its
turn

boolean flag [2];
int turn;
void P0()
{

while (true)
{

flag [0] = true;
while (flag [1])

if (turn == 1)
{

flag [0] = false;
while (turn == 1)
/* do nothing */;
flag [0] = true;

}
/* critical section */;
turn = 1;
flag [0] = false;
/* remainder */;

}
}

void P1()
{

while (true)
{

flag [1] = true;
while (flag [0])

if (turn == 0)
{

flag [1] = false;
while (turn == 0)
/* do nothing */;

flag [1] = true;
}

/* critical section */;
turn = 0;
flag [1] = false;
/* remainder */;

}
}

void main ()
{

flag [0] = false;
flag [1] = false;
turn = 1;
parbegin (P0, P1);

}

Busy-Waiting Correct
Solution(Dekker’s)

boolean flag [2];
int turn;
void P0()
{

while (true)
{

flag [0] = true;
turn = 1;
while (flag [1] && turn == 1)

/* do nothing */;
/* critical section */;
flag [0] = false;
/* remainder */;

}
}

void P1()
{

while (true)
{

flag [1] = true;
turn = 0;
while (flag [0] && turn == 0)

/* do nothing */;
/* critical section */;
flag [1] = false;
/* remainder */

}
}

void main()
{

flag [0] = false;
flag [1] = false;
parbegin (P0, P1);

}

Busy-Waiting Correct
Solution(Peterson’s)

Mutual Exclusion -
Interrupt Disabling

?A process runs until it invokes an operating
system service or until it is interrupted
?So disabling interrupts can guarantee mutual

exclusion
?But processor is limited in its ability to interleave

programs
?Efficiency of execution could be noticeably degraded

?Not working for multiprocessing
?disabling interrupts on one processor will not

guarantee mutual exclusion

while(true)
{

/* disable interrupts */;
/* critical section */;
/* enable interrupts */;
/* remainder */;

}

Mutual Exclusion -
Interrupt Disabling

Mutual Exclusion - Using
Machine Instructions

?Special Machine Instructions
?Carry out two actions atomically
?performed in a single instruction cycle
?not interrupted in the middle of execution

?Test and Set instruction
?Exchange instruction

Mutual Exclusion - Using
Machine Instructions

?Test and Set Instruction
boolean testset (int i) {

if (i == 0) {
i = 1;
return true;

}
else {

return false;
}

}

Mutual Exclusion - Using
Machine Instructions

?Exchange Instruction
void exchange(int register,

int memory) {
int temp;
temp = memory;
memory = register;
register = temp;

}

/* program mutualexclusion */
const int n = /* number of processes */;
int bolt;
void P(int i)
{

while (true)
{

while (!testset (bolt))
/* do nothing */;

/* critical section */;
bolt = 0;
/* remainder */

}
}
void main()
{

bolt = 0;
parbegin (P(1), P(2), . . . ,P(n));

}
(a) Test and set instruction

/* program mutualexclusion */
int const n = /* number of processes**/;
int bolt;
void P(int i)
{

int keyi;
while (true)
{

keyi = 1;
while (keyi != 0)

exchange (keyi, bolt);
/* critical section */;
exchange (keyi, bolt);
/* remainder */

}
}
void main()
{

bolt = 0;
parbegin (P(1), P(2), . . ., P(n));

}
(b) Exchange instruction

Figure 5.5 Hardware Support for Mutual Exclusion

Mutual Exclusion - Using
Machine Instructions

?Advantages
?Applicable to any number of processes on

either a single processor or multiple
processors sharing main memory
?It is simple and therefore easy to verify
?It can be used to support multiple critical

sections

Mutual Exclusion - Using
Machine Instructions

?Disadvantages
?Busy-waiting consumes processor time
?Starvation is possible when a process leaves

a critical section and more than one process
is waiting.
?Deadlock
?If a low priority process has the critical region and

a higher priority process preempts, the higher
priority process will obtain the processor to wait
for the critical region

Semaphores(by Dijkstra)

?Special variable called a semaphore is
used for signaling
?to transmit a signal, execute signal(s)
?to receive a signal, execute wait(s)
?If a process is waiting for a signal, it is suspended

until that signal is sent

?Wait and Signal operations cannot be
interrupted
?A queue is used to hold processes waiting

on the semaphore

Semaphores(by Dijkstra)

?Operations defined on a semaphore
?semaphore may be initialized to a

nonnegative value
?wait operation decrements the semaphore

value. If the value becomes negative, then
the process executing the wait is blocked
?signal operation increments the semaphore

value. If the value is not positive, then a
process blocked by a wait operation is
unblocked

struct semaphore {
int count;
queueType queue;

}
void wait(semaphore s)
{

s.count--;
if (s.count < 0)
{

place this process in s.queue;
block this process

}
}
void signal(semaphore s)
{

s.count++;
if (s.count <= 0)
{

remove a process P from s.queue;
place process P on ready list;

}
}
Figure 5.6 A Definition of Semaphore Primitives

struct binary_semaphore {
enum (zero, one) value;
queueType queue;

};
void waitB(binary_semaphore s)
{

if (s.value == 1)
s.value = 0;

else
{

place this process in s.queue;
block this process;

}
}
void signalB(semaphore s)
{

if (s.queue.is_empty())
s.value = 1;

else
{

remove a process P from s.queue;
place process P on ready list;

}
}
Figure 5.7 A Definition of Binary Semaphore Primitives

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int i)
{

while (true)
{

wait(s);
/* critical section */;
signal(s);
/* remainder */;

}
}
void main()
{

parbegin (P(1), P(2), . . ., P(n));
}
Figure 5.9 Mutual Exclusion Using Semaphores

Figure 5.10 Processes accessing shared data protected by a semaphore

Producer/Consumer
Problem

?One or more producers are generating data and
placing these in a buffer
?A single consumer is taking items out of the

buffer one at time
?Only one producer or consumer may access the

buffer at any one time
?Two semaphores are used
? one to represent the amount of items in the buffer
? one to signal that it is all right to use the buffer

Producer

producer:
while (true) {
/* produce item v */
b[in] = v;
in++;

}

Consumer

consumer:
while (true) {
while (in <= out)

/*do nothing */;
w = b[out];
out++;
/* consume item w */

}

Infinite Buffer

/* program producerconsumer */
int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;
void producer()
{

while (true)
{

produce();
waitB(s);
append();
n++;
if (n==1)

signalB(delay);
signalB(s);

}
}

void consumer()
{

waitB(delay);
while (true)
{

waitB(s);
take();
n--;
signalB(s);
consume();
if (n==0)

waitB(delay);
}

}
void main()
{

n = 0;
parbegin (producer, consumer);

}

Figure 5.12 An Incorrect Solution to the Infinite-Buffer Producer/Consumer Problem
Using Binary Semaphores

/* program producerconsumer */
int n;
binary_semaphore s = 1;
binary_semaphore delay = 0;
void producer()
{

while (true)
{

produce();
waitB(s);
append();
n++;
if (n==1) signalB(delay);
signalB(s);

}
}

void consumer()
{

int m; /* a local variable */
waitB(delay);
while (true)
{

waitB(s);
take();
n--;
m = n;
signalB(s);
consume();
if (m==0) waitB(delay);

}
}
void main()
{

n = 0;
parbegin (producer, consumer);

}

Figure 5.13 A Correct Solution to the Infinite-Buffer
Producer/Consumer Problem Using Binary Semaphores

/* program producerconsumer */
semaphore n = 0;
semaphore s = 1;
void producer()
{

while (true)
{

produce();
wait(s);
append();
signal(s);
signal(n);

}
}

void consumer()
{

while (true)
{

wait(n);
wait(s);
take();
signal(s);
consume();

}
}
void main()
{

parbegin (producer, consumer);
}

Figure 5.14 A Solution to the Infinite-Buffer Producer/Consumer
Problem Using Semaphores

Producer with Circular
Buffer

producer:
while (true) {
/* produce item v */
while ((in + 1) % n == out) /*
do nothing */;
b[in] = v;
in = (in + 1) % n

}

Consumer with Circular
Buffer

consumer:
while (true) {
while (in == out)

/* do nothing */;
w = b[out];
out = (out + 1) % n;
/* consume item w */

}

/* program boundedbuffer */
const int sizeofbuffer = /* buffer size */;
semaphore s = 1;
semaphore n= 0;
semaphore e= sizeofbuffer;
void producer()
{

while (true)
{

produce();
wait(e);
wait(s);
append();
signal(s);
signal(n)

}
}

void consumer()
{

while (true)
{

wait(n);
wait(s);
take();
signal(s);
signal(e);
consume();

}
}
void main()
{

parbegin (producer, consumer);
}

Figure 5.16 A Solution to the Bounded-Buffer Producer/Consumer
Problem Using Semaphores

Implementation of
Semaphores

?Wait and Signal should be implemented
as atomic primitives
?can be implemented as hardware instructions
?software schemes can be used
?this would entail a substantial processing

overhead

?hardware-supported schemes can be used

wait(s)
{

while (!testset(s.flag))
/* do nothing */;

s.count--;
if (s.count < 0)
{

place this process in s.queue;
block this process (must also set s.flag to 0)

}
else

s.flag = 0;
}
signal(s)
{

while (!testset(s.flag))
/* do nothing */;

s.count++;
if (s.count <= 0)
{

remove a process P from s.queue;
place process P on ready list

}
s.flag = 0;

}
(a) Testset Instruction

wait(s)
{

inhibit interrupts;
s.count--;
if (s.count < 0)
{

place this process in s.queue;
block this process and allow interrupts

}
else

allow interrupts;
}
signal(s)
{

inhibit interrupts;
s.count++;
if (s.count <= 0)
{

remove a process P from s.queue;
place process P on ready list

}
allow interrupts;

}
(b) Interrupts

Figure 5.17 Two Possible Implementations of Semaphores

Barbershop Problem

?Problem
?3 chairs, 3 barbers, and a waiting area
?fire code limits the total number of customers

in the shop to 20
?barbershop will eventually process 50

customers
?a customer will not enter the shop if it is filled

to capacity

?once inside, the customer takes a seat on the
sofa or stands if the sofa is filled
?when a barber is free, the customer that has

been on the sofa the longest is served and if
there are any standing customers, the one
that has been in the shop the longest takes a
seat on the sofa
?when a customer’s haircut is finished, any

barber can accept payment, but because
there is only one cash register, payment is
accepted for one customer at a time

/* program barbershop1 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3;
semaphore coord = 3;
semaphore cust_ready = 0, finished = 0, leave_b_chair = 0, payment= 0, receipt = 0;
void customer ()
{

wait(max_capacity);
enter_shop();
wait(sofa);
sit_on_sofa();
wait(barber_chair);
get_up_from_sofa();
signal(sofa);
sit_in_barber_chair;
signal(cust_ready);
wait(finished);
leave_barber_chair();
signal(leave_b_chair);
pay();
signal(payment);
wait(receipt);
exit_shop();
signal(max_capacity)

}

void barber()
{

while (true)
{

wait(cust_ready);
wait(coord);
cut_hair();
signal(coord);
signal(finished);
wait(leave_b_chair);
signal(barber_chair);

}
}

void cashier()
{

while (true)
{

wait(payment);
wait(coord);
accept_pay();
signal(coord);
signal(receipt);

}
}

void main()
{
parbegin (customer, . . . 50 times, . . . customer, barber, barber, barber, cashier);
}

Figure 5.19 An Unfair Barbershop

/* program barbershop2 */
semaphore max_capacity = 20;
semaphore sofa = 4;
semaphore barber_chair = 3, coord = 3;
semaphore mutex1 = 1, mutex2 = 1;
semaphore cust_ready = 0, leave_b_chair = 0, payment = 0, receipt = 0;
semaphore finished [50] = {0};
int count;
void customer()
{

int custnr;
wait(max_capacity);
enter_shop();
wait(mutex1);
count++;
custnr = count;
signal(mutex1);
wait(sofa);
sit_on_sofa();
wait(barber_chair);
get_up_from_sofa();
signal(sofa);
sit_in_barber_chair();
wait(mutex2);
enqueue1(custnr);
signal(cust_ready);
signal(mutex2);
wait(finished[custnr]);
leave_barber_chair();
signal(leave_b_chair);
pay();
signal(payment);
wait(receipt);
exit_shop();
signal(max_capacity)

}

void barber()
{

int b_cust;
while (true)
{

wait(cust_ready);
wait(mutex2);
dequeue1(b_cust);
signal(mutex2);
wait(coord);
cut_hair();
signal(coord);
signal(finished[b_cust]);
wait(leave_b_chair);
signal(barber_chair);

}
}

void cashier()
{

while (true)
{

wait(payment);
wait(coord);
accept_pay();
signal(coord);
signal(receipt);

}
}

void main()
{

count := 0;
parbegin (customer, . . . 50 times, . . . customer, barber, barber, barber,

cashier);
}

Figure 5.20 A Fair Barbershop

Monitor(with signal)
?Problems using semaphores
?may be difficult to produce a correct program
?operations are scattered throughout a program

?Monitor is a programming language construct
?Local data variables are accessible only by the

monitor
?Process enters monitor by invoking one of its

procedures
?Only one process may be executing in the

monitor at a time

Monitor(with signal)

?Operations for synchronization
?cwait(c)
?suspend execution of the calling process on

condition c

?csignal(c)
?resume execution of some process suspended

after a cwait on the same condition. If there are
several such processes, choose one of them; if
there is no such process, do nothing

Monitor(with signal)

?What if the csignal does not occur at the
end of the procedure
?process issuing the signal is suspended to

make the monitor available and placed in a
queue until the monitor is free
?urgent queue

?Concurrent Pascal requires that csignal only
appears as the last operation executed by a
monitor procedure

/* program producerconsumer */
monitor boundedbuffer;
char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count; /* number of items in buffer */
int notfull, notempty; /* for synchronization */
void append (char x)
{

if (count == N)
cwait(notfull); /* buffer is full; avoid overflow */

buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++; /* one more item in buffer */
csignal(notempty); /* resume any waiting consumer */

}
void take (char x)
{

if (count == 0)
cwait(notempty); /* buffer is empty; avoid underflow */

x = buffer[nextout];
nextout = (nextout + 1) % N;
count--; /* one fewer item in buffer */
csignal(notfull); /* resume any waiting producer */

}
{ /* monitor body */

nextin = 0; nextout = 0; count = 0; /* buffer initially empty */
}

Figure 5.22 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor

void producer()
char x;
{

while (true)
{

produce(x);
append(x);

}
}
void consumer()
{

char x;
while (true)
{

take(x);
consume(x);

}
}
void main()
{

parbegin (producer, consumer);
}

Figure 5.22 A Solution to the Bounded-Buffer Producer/Consumer Problem Using a Monitor

Monitor(with notify and
broadcast)

?Drawbacks of Hoare’s monitors
?if the process issuing csignal has not finished

with the monitor, then two additional process
switches are required
?process scheduling associated with a signal

must be perfectly reliable
?when a csignal is issued, a process from the

corresponding condition queue must be activated
immediately and the scheduler must ensure that
no other process enters the monitor before
activation

Monitor(with notify and
broadcast)

?Lampson/Redell Monitor
?cnotify instead of csignal
?cnotify(x) causes the x condition queue to be

notified, signaling process continues to execute
?the process at the head of the condition queue

will be resumed at some convenient future time
when the monitor is available
?because there is no guarantee that some other process

will not enter the monitor before the waiting process,
the waiting process must recheck the condition

Monitor(with notify and
broadcast)

?pros and cons
?at least one extra evaluation of the condition variable
?no extra process switches
?no constraints on when the waiting process must run

after a cnotify

?cbroadcast
?causes all processes waiting on a condition to be

placed in Ready state
?convenient when a process does not know how

many other processes should be reactivated

void append (char x)
{

while(count == N)
cwait(notfull); /* buffer is full; avoid overflow */

buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++; /* one more item in buffer */
cnotify(notempty); /* notify any waiting consumer */

}
void take (char x)
{

while(count == 0)
cwait(notempty); /* buffer is empty; avoid underflow */

x = buffer[nextout];
nextout = (nextout + 1) % N;
count--; /* one fewer item in buffer */
cnotify(notfull); /* notify any waiting producer */

}

Figure 5.23 Bounded Buffer Monitor Code

Message Passing

?Requirements for process interaction
?synchronization
?communication

?Message passing can provide both of the
above functions

send(destination, message)
receive(source, message)

Message Passing -
Synchronization

?Sender and receiver may or may not be
blocking (waiting for message)
?Blocking send, blocking receive
?both sender and receiver are blocked until

message is delivered
?called a rendezvous

Message Passing -
Synchronization

?Nonblocking send, blocking receive
?sender continues processing such as sending

messages as quickly as possible
?receiver is blocked until the requested

message arrives

?Nonblocking send, nonblocking receive
?neither party is required to wait

Addressing

?Direct addressing
?send primitive includes a specific identifier of

the destination process
?receive primitive could know ahead of time

from which process a message is expected
?receive primitive could use source parameter

to return a value when the receive operation
has been performed

Addressing

?Indirect addressing
?messages are sent to a shared data structure

consisting of queues
?queues are called mailboxes
?one process sends a message to the mailbox

and the other process picks up the message
from the mailbox

Message Format

/* program mutualexclusion */
const int n = /* number of processes */;
void P(int i)
{

message msg;
while (true)
{

receive (mutex, msg);
/* critical section */;
send (mutex, msg);
/* remainder */;

}
}
void main()
{

create_mailbox (mutex);
send (mutex, null);
parbegin (P(1), P(2), . . ., P(n));

}

Figure 5.26 Mutual Exclusion Using Messages

const int
capacity = /* buffering capacity */ ;
null = /* empty message */ ;

int i;
void producer()
{ message pmsg;

while (true)
{

receive (mayproduce, pmsg);
pmsg = produce();
send (mayconsume, pmsg);

}
}
void consumer()
{ message cmsg;

while (true)
{

receive (mayconsume, cmsg);
consume (cmsg);
send (mayproduce, null);

}
}

void main()
{

create_mailbox (mayproduce);
create_mailbox (mayconsume);
for (int i = 1; i <= capacity; i++)

send (mayproduce, null);
parbegin (producer, consumer);

}

Figure 5.27 A Solution to the Bounded-Buffer Producer/Consumer
Problem Using Messages

Readers/Writers Problem

?Readers have priority
?Any number of readers may simultaneously

read the file
?when there is already at least one reader reading,

subsequent readers need not wait before entering

?Only one writer at a time may write to the file
?If a writer is writing to the file, no reader may

read it

Readers/Writers Problem

?Semaphores and variables
?wsem : enforce mutual exclusion
?readcount : keep track of the number of readers

/* program readersandwriters */
int readcount ;
semaphore x = 1, wsem = 1;
void reader()
{

while (true)
{

wait (x);
readcount++;
if (readcount == 1)

wait (wsem);
signal (x);
READUNIT();
wait (x);
readcount--;
if (readcount == 0)

signal (wsem);
signal (x);

}
}

void writer()
{

while (true)
{

wait (wsem);
WRITEUNIT();
signal (wsem);

}
}
void main()
{

readcount = 0;
parbegin (reader, writer);

}

Figure 5.28 A Solution to the Readers/Writers Problem Using
Semaphores: Readers Have Priority

Readers/Writers Problem

?Writers have priority
?no new readers are allowed access to the

data area once at least one writer has
declared a desire to write
?additional semaphores and variables
?rsem : inhibits all readers while there is at least

one writer desiring access
?writecount : control the setting of rsem
?y : control the updating of writecount

/* program readersandwriters */
int readcount, writecount;
semaphore x = 1, y = 1, z = 1, wsem = 1, rsem = 1;
void reader()
{

while (true)
{

wait (z);
wait (rsem);
wait (x);
readcount++;
if (readcount == 1)
{

wait (wsem);
}
signal (x);
signal (rsem);
signal (z);
READUNIT();
wait (x);
readcount--;
if (readcount == 0)

signal (wsem);
signal (x);

}
}

void writer ()
{

while (true)
{

wait (y);
writecount++;
if (writecount == 1)

wait (rsem);
signal (y);
wait (wsem);
WRITEUNIT();
signal (wsem);
wait (y);
writecount--;
if (writecount == 0)

signal (rsem);
signal (y);

}
}
void main()
{

readcount = writecount = 0;
parbegin (reader, writer);

}

Figure 5. 29 A Solution to the Readers/Writers Problem Using Semaphores: Writers
Have Priority

