Concurrency: Deadlock
and Starvation

Chapter 6

Deadlock

Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

Involve conflicting needs for resources by
two or more processes

{a) Deadlock possible {b) Deadlock

Figure 6.1 Ilustration of Deadlock

Progress
of ()

Release

Release
Requlired B

Gel A

Required
Get B

‘.l

2

/WA

Get A Get B Release A Release B

ik
Required k—'—-—Y\J

B Required

Figure 6.2 Example of Deadlock [BACO98]

of ()
r'y
Release
A 4 S
A

Required Rel;am \\\
et ~ want B} ""x
: N
Requlired \

Gel B %

Get A Release A Getl B Release B

W\JL.-T—\J

A Required E Required

Figure 6.3 Example of No Deadlock [BACO98]

Reusable Resources

Used by one process at a time and not depleted
by that use

Processes obtain resources that they later
release for reuse by other processes

Processor time, 1/0 channels, main and
secondary memory, files, databases, and
semaphores

Deadlock occurs if each process holds one
resource and requests the other

Example of Deadlock

Process P
Step Action
Pg Request (D)
P Lock (D)
Ps Request (T)
Ps Lock (T)
P4 Perform function
Ps Unlock (D)
Ps Unlock (T)

Process O

Action

Request (T)
Lock (T)

Request (D)
Lock (D)

Perform function
Unlock (T)
Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusahle Resources

Example of Deadlock

Space Is available for allocation of 200K
bytes, and the following sequence of
events occur

P1 P2
Request 80K bytes; Request 70K bytes;
Request 60K bytes; Request 80K bytes;

Deadlock occurs if both processes progress to
their second request

Consumable Resources

Created (produced) and destroyed
(consumed) by a process

Interrupts, signals, messages, and
information in 1/0 buffers

Deadlock may occur if a Receive message

IS blocking

may take a rare combination of events to
cause deadlock

Example of Deadlock

Deadlock occurs if receive is blocking

Receive(P2);

P1

Send(P2, M1);

P2
Receive(Pl);

Send(P1, M2);

Conditions for Deadlock

Mutual exclusion
only one process may use a resource at a
time

Hold-and-walit

a process may hold allocated resources while
awaiting assignment of others

No preemption

no resource can be forcibly removed from a
process holding it

Conditions for Deadlock

Circular wait

a closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

consequence of the first three conditions

Four conditions constitute necessary and
sufficient conditions for deadlock

Circular Wait

Resource
B

Figure 6.5 Circular Wait

Methods for Handling
Deadlocks

Deadlock prevention

design a system in such a way that the
possibility of deadlock Is excluded

Deadlock avoidance

allows the three necessary conditions, but
assures that deadlock point is never reached

Deadlock detection
detects the deadlock asap

Deadlock recovery

Deadlock Prevention

Denying Mutual Exclusion
unthinkable
Denying Hold-and-Walit
require that a process request all its required

resources at one time

block the process until all requests can be granted
simultaneously

process may be held up for a long time waiting for all
Its requests
resources allocated to a process may remain
unused for a long time. These resources could
be used by other processes

Deadlock Prevention

Denying No preemption
If a process is denied a further request, the
process must release the original resources

If a process requests a resource that is currently
held by another process, OS may preempt the
second process and require it to release Its
resources

practical only when the state can be easily saved
and restored later, such as the processor

Deadlock Prevention

Denying Circular wait
define a linear ordering for resources

once a resource Is obtained, only those
resources higher in the list can be obtained

may deny resources unnecessarily

Deadlock situation

No deadlock situation

Deadlock Avoidance

A decision Is made dynamically whether
the current resource allocation request
will, If granted, potentially lead to a
deadlock

Requires knowledge of future process
request

Two Approaches to
Deadlock Avoildance

Do not start a process If its demands
might lead to deadlock

Do not grant an incremental resource
request to a process If this allocation
might lead to deadlock

Resource Allocation Denial

Referred to as the banker’s algorithm

State of the system is the current
allocation of resources to process

Safe state Is one In which there is at least
one order in which all the processes can be
run to completion without resulting in a
deadlock

Unsafe state Is a state that is not safe

Determination of a Safe

State - Initial State

Pl
P2
P3
P4

E1 E2 E3
5 2 2
6 1 3
3 1 4
4 2 2

Claim Matrizx

El
B2
B3
P4

E1 R2 E3
1 0 0
& 1 2
2 1 1
0 0 2
Allocation Matrix

{a) Initial state

o 3

&

Eesource Vector

Rl E2 RS>

0 1

1

Avyailable Vector

Determination of a Safe State
- P2 Runs to Completion

E1 EZ2 E= E1 EZ2 k= E1 EZ2 k=
F1 E; 2 2 F1 1 0 0 & 2 3
Pz 0 0 0 Pz 0 0 0
T3 2 1 4 T3) 1 1 Available Vector
P4 £ 2 2 P4 y] %
Claim MMatriz Allocation Matriz

(h) P2 runs to completion

Determination of a Safe State
- P1 Runs to Completion

Rl RZ2 B Rl R2 EA Rl R2 R
Bl 0 0 0 F1 0 0 0 Y 2 3
P2 0 0 0 B 0 0 0
P2 2 1 4 Pz 2 1 1 Available Vector
P4 4 2 2 P4 0 0 =
Claim Matriz Allocation Matrix

{c) P1 runs to completion

Determination of a Safe State
- P3 Runs to Completion

E1 k2 E= E1 k2 k= E1 EZ2 k=
F1 i 0 i F1 i 0 0 9 4 4
Pz 0 0 0 Pz 0 0 0
Pz () () () Pz () () 0 Awailable Vector
P4 4 7 2 P4 0 0 2
Claim Mlatrix Allocation hatrix

{d) P3 runs to completion

Determination of an
Unsafe State

E1 EZ E= E1 EZ E3 E1 EZ k=

Pl | 3 2 2 Pl 1 0 0 9 3 b
Pz & 1 = Pz & 1 1

Eesource Vector

P= 3 1 el Pz 2 1 1
P4 | 7 2 P4 0 0 2

k1 EZ k=

Claim Matriz Allocation Matriz 1]l 2

Awailable Vector

{(a) Initial state

Determination of an
Unsafe State

E1l E2 E3 El Ez E3 E1 Ez E3
F1 3 2 2 F1 2 0 1 0 1 1
P2 & 1 3 P2 =) 1 1
p3 3 1 4 P3 5 1 1 Avatlable Vector
P4 4 2 2 P4 0 0 2
Claim Matrix Allocation Matrix

(b) P1 requests one unit each of R1 and B3

Banker’s algorithm

Pros and Cons
no rollback and no preemption

less restrictive than deadlock prevention

maximum resource requirement for each
process must be stated in advance

the process under consideration must be
Independent

there must be a fixed number of resources to
allocate

no process may exit while holding resources

Deadlock Detection

Deadlock prevention is very conservative
limiting access to resources
Imposing restrictions on processes

Deadlock detection

requested resources are granted to processes
whenever possible

periodically, OS performs detection algorithm

Deadlock Detection

Detection algorithm

Allocation matrix, Resource vector, and
Available vector

Request matrix Q Is defined such that g
represents the amount of resources of type |
requested by process |

Initially, all processes are unmarked

A deadlock exists Iff there are unmarked
processes at the end of the algorithm

Detection algorithm

1. Mark each process that has a row In the
Allocation matrix of all zeros

2. Initialize a temporary vector W to equal the
Available vector

3. Find an index | such that process | is
currently unmarked and the ith row of Q Is
less than or equal to W. If no such row is
found terminate the algorithm

4. If such a row Is found, mark process | and
add the corresponding row of the Allocation
matrix to W. Return to step 3

Deadlock Detection

Rl R2Z R3 R4 RS Rl R2Z R3 R4 RS Rl R2 R3 R4 RS
P1| O 1 0 0 1 Pl [t 0 1 1 0 2 1 1 2 1
P2 | O 0 1 0 1 P2 [1 0 0 0
P3| o 0 0 0 1 P3| o 0 0 1 0 Resource Vector
P4 | 1 0 1 0 1 P4 | O 0 0 0 0

Request Matrix Q Allocation Matrix A

Available Vector

Figure 6.9 Example for Deadlock Detection

Strategies Once Deadlock
Detected

Abort all deadlocked processes

Back up each deadlocked process to some

previously defined checkpoint, and restart all
process

original deadlock may occur

Successively abort deadlocked processes until
deadlock no longer exists

Successively preempt resources until deadlock
no longer exists

Selection Criteria
Deadlocked Processes

Least amount of processor time consumed
so far

Least amount of output produced so far
Most estimated time remaining

Least total resources allocated so far
Lowest priority

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance

Approaches for Operating Systems [ISLOS0]

Principle

Resource Allocation Policy

Different Schemes

Major Advantages

Major Disadvantages

Prewvention

Conservative;, undercommits

IEsOUrces.

Requesting all resources

«Works well for processes that perform a

sInefficient

at once, single burst of activity. «Delays process initiation
«No preemption necessary *Future resource requirements
miust be known
Preemption «Convenient when applied to resources *Preempts more often than

whose state can be saved and restored
easily

nEecessary
*Subject to cyelic restart

Resource ordering

*Feasible to enforce via compile-time
checks

«MNeeds no run-time computation since
prollem is solved in system design

*Preempis without much use
s[Msallows incremental resource
requests

Avoidance

Midway between that of
detection and prevention

Manipulate to find at
least one safe path

«No preemption necessary

*Future resource requirements
must be known

*Processes can be blocked for
long periods

Detection

Wery liberal; requested resources
are granted where possible.

Invoke periodically 1o
test for deadlock.

«MNever delays process initiation
«Facilitates on-line handling

Inherent preemption losses

Dining Philosophers
Problem

/* program dining philosophers */
semaphore fork[5] = {1};

int 1,
void philosopher(int i)
{
while(true)
{
think();
wait(fork[i]);
wait(fork[(i+1) mod 5]);
eat();
signal(fork[(i+1) mod 5]);
signal(fork[i]);
¥
¥
void main()
{

parbegin(philosopher(0), philosopher(1), philosopher(2),
philosopher(3), philosopher(4));
¥

Figure6.11 A first solution to the Dining Philosophers Problem

/* program dining philosophers */
semaphore fork[5] = {1};
semaphore room = {4};

int i

void philosopher(int 1)

¢ while(true) Figure 6.12 A second solution tothe

{ Dining Philosophers Problem
think();

wait(room);
wait(fork[i]);
wait(fork[(i+1) mod 5]);
eat();
signal(fork[(i+1) mod 5]);
signal(fork[i]);
signal(room);
by
¥
void main()
{
parbegin(philosopher(0), philosopher(1), philosopher(2),
philosopher(3), philosopher(4));

Dining Philosophers
Problem

Possible solutions
buy 5 additional forks(more sanitary solution)

teach the philosophers to eat spaghetti with
just one fork

only allow 4 philosophers at a time into the
dining room

arrange the seating of lefties and righties
with at least one of each

UNIX Concurrency
Mechanisms

Pipes

Messages
Shared memory
Semaphores
Signals

UNIX Concurrency
Mechanisms

Pipes
circular buffer allowing two processes to
communicate

gueue written by one process and read by
another

operating system enforces mutual exclusion for
writing and reading the pipe

write requests are immediately executed if there
IS room In the pipe, otherwise the process Is
blocked

read request is blocked if attempts to read more
bytes than currently in the pipe

UNIX Concurrency
Mechanisms

Messages
block of text with accompanying type

receiver can either retrieve messages in FIFO
order or by type

process suspends when trying to send a
message to a full queue

process suspends when reading from an
empty queue

UNIX Concurrency
Mechanisms

Shared memory

common block of virtual memory shared by
multiple processes

fast form of interprocess communication

mutual exclusion must be provided by the
processes, not the operating system

UNIX Concurrency
Mechanisms

Semaphores

walit and signal

operating system handles all these requests
Signals

software mechanism that informs a process
of the occurrence of asynchronous events

Table 6.2 UNIX Signals

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the

user of that process is doing no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL [llegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT 10T instruction

07 SIGEMT EMT instruction

08 SIGFPT Floating-point exception

09 SIGKILL Kill; terminate process

10
11

12
13
14

15
16
17
18
19

SIGBUS
SIGSEGV

SIGSYS
SIGPIPE
SIGALARM

SIGTERM
SIGUSRI
SIGUSR2
SIGCLD
SIGPWR

Bus error

Segmentation violation; process attempts to access
location outside its virtual address space

Bad argument to system call
Write on a pipe that has no readers attached to it

Alarm clock; issued when a process wishes to receive a

signal after a period of time
Software termination
User-defined signal |
User-defined signal 2
Death of a child

Power failure

Solaris Thread
Synchronization Primitives

Mutual exclusion(mutex) lock

prevents more than one thread from
proceeding when the lock Is acquired

Semaphores
used for incrementing and decrementing

Solaris Thread
Synchronization Primitives

Multiple readers, single writer
(readers/writer) locks

multiple threads have simultaneous read-only
access

single thread has access for writing

Condition variables

used to wait until a particular condition is
true

owner { 3 octets)

lock (1 octet)

walters (2 octets)

type speclfic Info (4 octeis)
(possibly a turnstile id,
lock type Tiller,
or statistics pointer)

(a) MUTEX lock

Type (1 octet)
wlock (1 octet)

walters (2 octets)

count (4 octets)

{ b) Semaphore

Figure 6.13 Solaris Synchronization Data Structures

Type (1 octet)

wlock (1 octet)

walters (2 octets)

union (4 octets)
istatistic pointer or
number of write requests)

thread owner (4 octets)

() Reader/wrlter lock

‘ walters (2 octets) I

(d) Condltion varlable

Figure 6.13 Solaris Synchronization Data Structures

Windows 2000
Concurrency Mechanisms

Synchronization Objects
Process
Thread
File
Console input
File change notification
Mutex
Semaphore
Event
Waitable timer

Table 6.3 Windows 2000 Synchronization Objects

Object Type

Definition

Set to Signaled State When

Effect on Waiting Threads

Process

Thread

File

Console Input

File Change
MNotification
Mutex

Semaphore

Event

Waitable Timer

A program invocation, including
the address space and resources
required to run the program

An executable entity within a
process

An instance of an opened file or
/O device

A text window screen buffer. (e.g.,
used to handle screen 10 for an
MS-DOS application)

A notification of any file system
changes.

A mechanism that provides mutual
gxclusion capabilities for the
Win32 and 05/2 environments

A counter that regulates the
number of threads that can use a
resource

An announcement that a system
event has occurred

A counter that records the passage
of time

Last thread terminates

Thread terminates

/O operation completes

[nput is available for processing
Change occurs in file system that
matches filter criteria of this object
Owning thread or other thread

releases the mutant

Semaphore count drops to zero

Thread sets the event

Set time arrives or time interval
gxpires

All released

All released

All released

{One thread released

One thread released

One thread released

All released

All released

All released

Mote: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

