
Concurrency: Deadlock
and Starvation

Chapter 6

Deadlock

?Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other
?Involve conflicting needs for resources by

two or more processes

Reusable Resources

?Used by one process at a time and not depleted
by that use

?Processes obtain resources that they later
release for reuse by other processes

?Processor time, I/O channels, main and
secondary memory, files, databases, and
semaphores

?Deadlock occurs if each process holds one
resource and requests the other

Example of Deadlock

Example of Deadlock

?Space is available for allocation of 200K
bytes, and the following sequence of
events occur

?Deadlock occurs if both processes progress to
their second request

P1

. . .

. . .
Request 80K bytes;

Request 60K bytes;

P2

. . .

. . .
Request 70K bytes;

Request 80K bytes;

Consumable Resources

?Created (produced) and destroyed
(consumed) by a process
?Interrupts, signals, messages, and

information in I/O buffers
?Deadlock may occur if a Receive message

is blocking
?may take a rare combination of events to

cause deadlock

Example of Deadlock

?Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);

Conditions for Deadlock

?Mutual exclusion
?only one process may use a resource at a

time
?Hold-and-wait
?a process may hold allocated resources while

awaiting assignment of others

?No preemption
?no resource can be forcibly removed from a

process holding it

Conditions for Deadlock

?Circular wait
?a closed chain of processes exists, such that

each process holds at least one resource
needed by the next process in the chain
?consequence of the first three conditions

?Four conditions constitute necessary and
sufficient conditions for deadlock

Circular Wait

Methods for Handling
Deadlocks

?Deadlock prevention
?design a system in such a way that the

possibility of deadlock is excluded

?Deadlock avoidance
?allows the three necessary conditions, but

assures that deadlock point is never reached

?Deadlock detection
?detects the deadlock asap

?Deadlock recovery

Deadlock Prevention
?Denying Mutual Exclusion
?unthinkable

?Denying Hold-and-Wait
?require that a process request all its required

resources at one time
?block the process until all requests can be granted

simultaneously
?process may be held up for a long time waiting for all

its requests

?resources allocated to a process may remain
unused for a long time. These resources could
be used by other processes

Deadlock Prevention

?Denying No preemption
?if a process is denied a further request, the

process must release the original resources
?if a process requests a resource that is currently

held by another process, OS may preempt the
second process and require it to release its
resources
?practical only when the state can be easily saved

and restored later, such as the processor

Deadlock Prevention

?Denying Circular wait
?define a linear ordering for resources
?once a resource is obtained, only those

resources higher in the list can be obtained
?may deny resources unnecessarily

P1 P2 P3

R1 R2 R3

Deadlock situation

No deadlock situation

P1 P2 P3

R1 R2 R3 ………….

Deadlock Avoidance

?A decision is made dynamically whether
the current resource allocation request
will, if granted, potentially lead to a
deadlock
?Requires knowledge of future process

request

Two Approaches to
Deadlock Avoidance

?Do not start a process if its demands
might lead to deadlock
?Do not grant an incremental resource

request to a process if this allocation
might lead to deadlock

Resource Allocation Denial

?Referred to as the banker’s algorithm
?State of the system is the current

allocation of resources to process
?Safe state is one in which there is at least

one order in which all the processes can be
run to completion without resulting in a
deadlock
?Unsafe state is a state that is not safe

Determination of a Safe
State - Initial State

Determination of a Safe State
- P2 Runs to Completion

Determination of a Safe State
- P1 Runs to Completion

Determination of a Safe State
- P3 Runs to Completion

Determination of an
Unsafe State

Determination of an
Unsafe State

Banker’s algorithm

?Pros and Cons
?no rollback and no preemption
?less restrictive than deadlock prevention
?maximum resource requirement for each

process must be stated in advance
?the process under consideration must be

independent
?there must be a fixed number of resources to

allocate
?no process may exit while holding resources

Deadlock Detection

?Deadlock prevention is very conservative
?limiting access to resources
?imposing restrictions on processes

?Deadlock detection
?requested resources are granted to processes

whenever possible
?periodically, OS performs detection algorithm

Deadlock Detection

?Detection algorithm
?Allocation matrix, Resource vector, and

Available vector
?Request matrix Q is defined such that qij

represents the amount of resources of type j
requested by process I
?Initially, all processes are unmarked
?A deadlock exists iff there are unmarked

processes at the end of the algorithm

?Detection algorithm
1. Mark each process that has a row in the

Allocation matrix of all zeros
2. Initialize a temporary vector W to equal the

Available vector
3. Find an index I such that process I is

currently unmarked and the ith row of Q is
less than or equal to W. If no such row is
found terminate the algorithm

4. If such a row is found, mark process I and
add the corresponding row of the Allocation
matrix to W. Return to step 3

Deadlock Detection

Strategies Once Deadlock
Detected

?Abort all deadlocked processes
?Back up each deadlocked process to some

previously defined checkpoint, and restart all
process
?original deadlock may occur

?Successively abort deadlocked processes until
deadlock no longer exists

?Successively preempt resources until deadlock
no longer exists

Selection Criteria
Deadlocked Processes

?Least amount of processor time consumed
so far
?Least amount of output produced so far
?Most estimated time remaining
?Least total resources allocated so far
?Lowest priority

Dining Philosophers
Problem

/* program dining philosophers */
semaphore fork[5] = {1};
int i;
void philosopher(int i)
{

while(true)
{

think();
wait(fork[i]);
wait(fork[(i+1) mod 5]);
eat();
signal(fork[(i+1) mod 5]);
signal(fork[i]);

}
}
void main()
{

parbegin(philosopher(0), philosopher(1), philosopher(2),
philosopher(3), philosopher(4));

}

Figure 6.11 A first solution to the Dining Philosophers Problem

/* program dining philosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher(int i)
{

while(true)
{

think();
wait(room);
wait(fork[i]);
wait(fork[(i+1) mod 5]);
eat();
signal(fork[(i+1) mod 5]);
signal(fork[i]);
signal(room);

}
}
void main()
{

parbegin(philosopher(0), philosopher(1), philosopher(2),
philosopher(3), philosopher(4));

}

Figure 6.12 A second solution to the
Dining Philosophers Problem

Dining Philosophers
Problem

?Possible solutions
?buy 5 additional forks(more sanitary solution)
?teach the philosophers to eat spaghetti with

just one fork
?only allow 4 philosophers at a time into the

dining room
?arrange the seating of lefties and righties

with at least one of each

UNIX Concurrency
Mechanisms

?Pipes
?Messages
?Shared memory
?Semaphores
?Signals

UNIX Concurrency
Mechanisms
?Pipes
?circular buffer allowing two processes to

communicate
?queue written by one process and read by

another
?operating system enforces mutual exclusion for

writing and reading the pipe
?write requests are immediately executed if there

is room in the pipe, otherwise the process is
blocked
?read request is blocked if attempts to read more

bytes than currently in the pipe

UNIX Concurrency
Mechanisms

?Messages
?block of text with accompanying type
?receiver can either retrieve messages in FIFO

order or by type
?process suspends when trying to send a

message to a full queue
?process suspends when reading from an

empty queue

UNIX Concurrency
Mechanisms

?Shared memory
?common block of virtual memory shared by

multiple processes
?fast form of interprocess communication
?mutual exclusion must be provided by the

processes, not the operating system

UNIX Concurrency
Mechanisms

?Semaphores
?wait and signal
?operating system handles all these requests

?Signals
?software mechanism that informs a process

of the occurrence of asynchronous events

Solaris Thread
Synchronization Primitives

?Mutual exclusion(mutex) lock
?prevents more than one thread from

proceeding when the lock is acquired

?Semaphores
?used for incrementing and decrementing

Solaris Thread
Synchronization Primitives

?Multiple readers, single writer
(readers/writer) locks
?multiple threads have simultaneous read-only

access
?single thread has access for writing

?Condition variables
?used to wait until a particular condition is

true

Windows 2000
Concurrency Mechanisms

?Synchronization Objects
?Process
?Thread
?File
?Console input
?File change notification
?Mutex
?Semaphore
?Event
?Waitable timer

