
Memory Management

Chapter 7

Contents

?Memory management requirements
?Memory partitioning
?Fixed partitioning
?Dynamic partitioning

?Simple Paging
?Simple Segmentation

Memory Management

?Subdividing memory to accommodate
multiple processes
?Memory needs to be allocated efficiently

to pack as many processes into memory
as possible

Memory Management
Requirements

?Relocation
?Protection
?Sharing
?Logical organization
?Physical organization

Memory Management
Requirements

?Relocation
?programmer does not know where the

program will be placed in memory when it is
executed
?while the program is executing, it may be

swapped to disk and returned to main
memory at a different location(relocation)
?memory references in the code must be

translated to actual physical memory address

Memory Management
Requirements

?Protection
?processes should not be able to reference

memory locations in another process without
permission
?impossible to check absolute addresses in

compile time since the program could be
relocated
?so it must be checked during execution by

hardware(processor)

Memory Management
Requirements

?Sharing
?allow several processes to access the same

portion of memory
?better to allow each process access to the

same copy of the program rather than have
its own separate copy

Memory Management
Requirements

?Physical main memory is a sequence of bytes

?Logical Organization
?programs are written in modules
?modules can be written and compiled

independently
?shared modules
?shared memory

?different degrees of protection given to
modules (read-only, execute-only)

Memory Management
Requirements

?Physical Organization
?computer memory is organized into at least

two levels
?main memory, secondary memory

?task of moving information between the two
levels is a major system concern
?virtual memory

Memory Management
Techniques

?Memory partitioning
?fixed partitioning
?dynamic partitioning

?Simple paging
?Simple segmentation
?Virtual Memory paging
?Virtual Memory segmentation

Fixed Partitioning

?Partition available memory into regions with
fixed boundaries
?Equal-size partitions
?any process whose size is less than or equal to the

partition size can be loaded into an available partition
?if all partitions are full, the operating system can

swap a process out of a partition
?a program may not fit in a partition. The

programmer must design the program with overlays

Fixed Partitioning

?Inefficient use of main memory
?Any program, no matter how small,

occupies an entire partition. This is
called internal fragmentation.

8 M

8 M

8 M

8 M

8 M
Operating System

Fixed Partitioning

?Unequal-size partitions
?lessens the problem with equal-

size partitions

Operating System
8 M

12 M

8 M

8 M

6 M

4 M
2 M

Placement Algorithm with
Partitions

?Equal-size partitions
?because all partitions are of equal size, it

does not matter which partition is used
?Unequal-size partitions
?can assign each process to the smallest

partition within which it will fit
?processes are assigned in such a way as to

minimize wasted memory within a partition

One Process Queue per
Partition

New
Processes

Operating
System

?Assign each process to
the smallest partition
within which it will fit
?Assume that one

knows the maximum
amount of memory
that a process will
require

Single Process Queue

?When its time to
load a process into
main memory the
smallest available
partition that will
hold the process is
selected

Operating
System

New
Processes

Dynamic Partitioning

?Partitions are of variable length and number
?Process is allocated exactly as much memory as

required
?Eventually get holes in the memory. This is

called external fragmentation
?Must use compaction to shift processes so they

are contiguous and all free memory is in one
block

Dynamic Partitioning
Placement Algorithm

?Operating system must decide which free block
to allocate to a process
?Best-fit algorithm
?chooses the block that is closest in size to the request
?worst performer overall
?since smallest block is found for process, the smallest

amount of fragmentation is left

?memory compaction must be done more often

Dynamic Partitioning
Placement Algorithm

?First-fit algorithm
?starts scanning memory from the beginning

and chooses the first available block that is
large enough.
?fastest
?may have many process loaded in the front

end of memory that must be searched over
when trying to find a free block

Dynamic Partitioning
Placement Algorithm
?Next-fit algorithm
?starts scanning memory from the location of the last

placement and chooses the next available block that
is large enough
?more often allocate a block of memory at the end of

memory where the largest block is found
?the largest block of memory is broken up into smaller

blocks
?compaction is required to obtain a large block at the

end of memory

Buddy System

?Problems of fixed and dynamic partitioning
?limit the number of active processes and use

space inefficiently
?more complex to maintain and the overhead

of compaction

?Buddy system as a compromise

Buddy System

?Entire space available is treated as a
single block of 2U

?If a request of size s such that 2U-1 < s
<= 2U is made, entire block is allocated
?Otherwise block is split into two equal

buddies
?Process continues until smallest block greater

than or equal to s is generated

Buddy System

procedure get_hole(i);
begin

if (i == U + 1) then failure;
if (i_list empty) then begin

get hole(i + 1);
split hole into buddies;
put buddies on i_list;

end;
take first hole on i_list;

end;

Relocation

?When program is loaded into memory, the actual
(absolute) memory locations are determined
?A process may occupy different partitions which

means different absolute memory locations during
execution (from swapping)
?Compaction will also cause a program to occupy a

different partition which means different absolute
memory locations

Addresses

?Logical address
?reference to a memory location independent of the

current assignment of data to memory
?translation must be made to the physical address

?Relative address
?an example of logical address
?address expressed as a location relative to some

known point

?Physical
?the absolute address or actual location

Registers Used during
Execution

?Base register
?starting address for the process

?Bounds register
?ending location of the process

?These values are set when the process is
loaded and when the process is swapped
in

Registers Used during
Execution

?The value of the base register is added to
a relative address to produce an absolute
address
?The resulting address is compared with

the value in the bounds register
?If the address is not within bounds, an

interrupt is generated to the operating
system

Paging

?Partition memory into small equal-size chunks
and divide each process into the same size
chunks
?The chunks of a process are called pages and

chunks of memory are called page frames
?Operating system maintains a page table for

each process
?contains the frame location for each page in the

process
?memory address consist of a page number and

offset within the page

Page Tables for Example

An Example(paging)

?Consider an address of n+m bits
?leftmost n bits are the page number
?rightmost m bits are the offset

?Address translation
?extract the page number as the leftmost n bits of the

logical address
?use the page number as an index into the process

page table
?starting physical address of the frame is k x 2m

?the physical address can easily be constructed by appending
the frame number to the offset

Figure 7.11 Logical addresses

Figure 7.12 Examples of Logical-to-Physical address translation

Segmentation

?All segments of a process do not have to
be of the same length
?text, data, stack, PCB, shared memory...

?Each process has a segment table
?Addressing consist of two parts
?a segment number and an offset

An Example(segmentation)

?Consider an address of n+m bits
?leftmost n bits are the page number
?rightmost m bits are the offset

?Address translation
?extract the segment number as the leftmost n bits of

the logical address
?use the segment number as an index into the process

segment table
?compare the offset to the length of the segment
?the physical address is the sum of the starting

physical address plus the offset

Figure 7.12 Examples of Logical-to-Physical address translation

