
Virtual Memory

Chapter 8

Contents

?Hardware and control structures
?Operating system software
?Unix and Solaris memory management
?Linux memory management
?Windows 2000 memory management

Characteristics of simple
Paging and Segmentation

?Memory references are dynamically translated
into physical addresses at run time
?a process may be swapped in and out of main

memory such that it occupies different regions
?A process may be broken up into pieces that

do not need to be located contiguously in main
memory
?Is it necessary that all the pages of a process

be in main memory during execution?

Execution of a Program

?Operating system brings into main memory a
few pieces of the program
?resident set - portion of process that is in main

memory

?An interrupt is generated when an address is
needed that is not in main memory
?operating system places the process in a blocking

state

Execution of a Program

?Piece of process that contains the logical
address is brought into main memory
?operating system issues a disk I/O Read

request
?another process is dispatched to run while

the disk I/O takes place
?an interrupt is issued when disk I/O complete

which causes the operating system to place
the affected process in the Ready state

Advantages of This
Maneuver

?More processes may be maintained in main
memory
?only load in some of the pieces of each process
?with so many processes in main memory, it is very

likely a process will be in the Ready state at any
particular time

?It is possible for a process to be larger than
all the main memory
?programmer is dealing with memory size of the

hard disk

Advantages of This
Maneuver

?It would be wasteful to load in many
pieces of the process when only a few
pieces will be used
?Time can be saved because unused pieces

are not swapped in and out of memory

Types of Memory

?Real memory
?main memory

?Virtual memory
?memory on disk
?allows for effective multiprogramming and

relieves the user of tight constraints of main
memory

Thrashing

?Swapping out a piece of a process just
before that piece is needed
?The processor spends most of its time

swapping pieces rather than executing
user instructions

Principle of Locality

?Program and data references within a
process tend to cluster
?Only a few pieces of a process will be

needed over a short period of time
?Possible to make intelligent guesses about

which pieces will be needed in the future
?This suggests that virtual memory may

work efficiently

Support Needed for
Virtual Memory

?Hardware must support paging and
segmentation
?OS must be able to manage the

movement of pages and/or segments
between secondary memory and main
memory

VM Paging

?Each process has its own page table
?Each page table entry contains the frame

number of the corresponding page in
main memory
?A bit is needed to indicate whether the

page is in main memory or not

Modify Bit in Page Table

?A bit is needed to indicate if the page has
been altered since it was last loaded into
main memory
?If no change has been made, the page

does not have to be written to the disk
when it needs to be swapped out

Page Table Entries

Figure 8.3 Address translation in a paging system

Page Table Structure

?The entire page table may take up too much
main memory
?in VAX, each process can have up to 2 GB of memory
?if page size is 512 byte, we need 222 page table

entries

?Page tables can also be stored in virtual
memory
?When a process is running, part of its page

table is in main memory

Page Table Structure

?Two-level scheme
?assume 32-bit address, 4 KB pages and 4 GB

address space
?220 pages, requiring 4 MB

?root page table with 210 PTEs occupying a
page(4 KB)
?always remains in main memory

?user page table is kept in virtual memory
?they are mapped by a root page table

Two-Level Scheme for
32-bit Address

Figure 8.5 Address translation in a two-level paging system

Page Table Structure

?Inverted page table structure
?used on Power PC and on IBM’s AS/400
?page number portion of a virtual address is mapped

into a hash table
?hash table contains a pointer to the inverted page

table
?there is one entry in the hash table and inverted page table

for each real memory page
?fixed proportion of real memory is required for the tables

?faster access to the page is possible

Figure 8.6 Inverted page table structure

Translation Lookaside
Buffer(TLB)

?Each virtual memory reference can cause
two physical memory accesses
?one to fetch the page table entry
?one to fetch the data

?To overcome this problem a special cache
is set up for page table entries
?called a TLB - Translation Lookaside Buffer

TLB

?Contains page table entries that have
been most recently used
?Works similar to a memory cache

TLB(Operations)

?Given a virtual address, processor
examines the TLB
?If page table entry is present (a hit), the

frame number is retrieved and the real
address is formed
?If page table entry is not found in the TLB

(a miss), the page number is used to
index the process page table

TLB(Operations)

?Check if page is already in main memory
?if not in main memory a page fault is issued

?TLB is updated to include the new page
entry

Figure 8.10 TLB and cache operation

Page Size

?Smaller page size, less amount of internal
fragmentation
?Smaller page size, more pages required per

process
?more pages per process means larger page tables
?larger page tables means large portion of page tables

in virtual memory
?Secondary memory devices favor a larger page

size for more efficient block transfer of data

Page Size and
Page Fault Rate
?Small page size, large number of pages will be

found in main memory
?As time goes on during execution, the pages in

memory will all contain portions of the process
near recent references
?page faults low

?Increased page size causes pages to contain
locations further from any recent reference
?effect of the principle of locality is weakened and

page fault rate rise
?page fault rate will begin to fall as the size of a page

approaches the size of the entire process

Page Size and
TLB Performance

?Multiple page sizes provide the flexibility
needed to effectively use a TLB
?Large pages can be used for program

instructions
?Small pages can be used for thread stacks

?But most operating system support only
one page size
?page size affects many aspects of OS

VM Segmentation

?May be unequal, dynamic size
?Advantages
?Simplifies handling of growing data structures
?OS will expand or shrink the segment as needed

?Allows programs to be altered and recompiled
independently
?Used for sharing data among processes
?Lends itself to protection
?a segment can be constructed to contain a well-defined set

of programs or data

Segment Tables

?Address : (segment number, offset)
?Each entry contains the starting address of the

corresponding segment in main memory
?Each entry contains the length of the segment
?A bit is needed to determine if segment is

already in main memory
?A bit is needed to determine if the segment has

been modified since it was loaded in main
memory

Segment Table Entries

Figure 8.12 Address translation in a segmentation system

Combined Paging and
Segmentation

?Paging is transparent to the programmer
?Paging eliminates external fragmentation
?Segmentation is visible to the programmer
?Segmentation allows for growing data

structures, modularity, and support for sharing
and protection
?Each segment is broken into fixed-size pages

Combined Segmentation
and Paging

Figure 8.12 Address translation in a segmentation/paging system

OS Software

?Design of memory-management depends
on the following areas of choice
?whether or not to use virtual memory
?use of paging or segmentation or both
?algorithms employed for various aspects of

memory management
?see next slide

Fetch Policy

?Determines when a page should be
brought into memory
?Demand paging only brings pages into main

memory when a reference is made to a
location on the page
?many page faults when process first started

?Prepaging brings in more pages than needed
?more efficient to bring in pages that reside

contiguously on the disk

Placement Policy

?Determines where in real memory a
process piece is to reside
?Case of the segmentation system
?best-fit, first-fit, next-fit…

?Case of the paging system
?nothing to consider

Replacement Policy

?Deals with the selection of a page in
memory to be replaced when a new page
is brought in
?Frame locking used for frames that may

not be replaced
?kernel and key control structures of OS
?I/O buffers

boolean choosing[n];
int number[n];
while(true)
{

choosing[i] = true;
for (int j = 0; j <> n: j++)
{

while(choosing[j])
{ };
while((number[j] != 0) &&
(number[j],j) <> (number[i], i))

{ };
/* critical section */
number[i] = 0;
/* remainder */

}
}

boolean choosing[n];
int number[n];
while(true)
{

choosing[i] = true;
for (int j = 0; j <> n: j++)
{

while(choosing[j])
{ };
while((number[j] != 0) &&
(number[j],j) < (number[i], i))

{ };
}

/* critical section */
number[i] = 0;
/* remainder */

}

Algorithm in 5.9 should be changed

FROM TO

Replacement Policy

?Basic algorithms
?Optimal
?Least recently used(LRU)
?First-in-first-out(FIFO)
?Clock

Replacement Policy

?Optimal algorithm
?selects for replacement that page for which

the time to the next reference is the longest
?results in the fewest number of page faults

?impossible to have perfect knowledge of
future events: impossible to implement
?used to judge other algorithms

Replacement Policy

?Least Recently Used (LRU)
?Replaces the page that has not been

referenced for the longest time
?By the principle of locality, this should be the

page least likely to be referenced in the near
future
?Each page need to be tagged with the time

of last reference
?require a great deal of overhead.

Replacement Policy

?First-In, First-Out (FIFO)
?Simplest replacement policy to implement
?Treats page frames allocated to a process as

a circular buffer
?Page that has been in memory the longest is

replaced
?these pages may be needed again very soon

Replacement Policy

?Second Chance algorithm
?FIFO with use-bit (or reference bit, R)
?avoid the problem of throwing out heavily used

pages
?if the R bit is 0, the page is both old and unused,

so it is replaced immediately
?if the R bit is 1, the bit is cleared, the page is put

onto the end of the list of pages, and its load
time is updated as though it had just arrived in
memory
?inefficient because it is constantly moving pages

around on its list

Replacement Policy

?Clock algorithm
?Additional bit called a use bit
?When a page is first loaded in memory, use

bit is set to 1
?When the page is referenced, use bit is set to

1
?When it is time to replace a page, the first

frame encountered with the use bit set to 0 is
replaced.
?During the search for replacement, each use

bit with 1 is changed to 0

Example 8.16 Example of clock policy operation

Example 8.16 Example of clock policy operation

Figure 8.15 Behavior of four page replacement algorithms

Replacement Policy

?NRU (Not Recently Used)
?reference bit (R) and modified bit (M)
?timer interrupt : periodically clear R bit
?Class 0 : not recently referenced, not modified
?Class 1 : not recently referenced, modified
?Class 2 : referenced, not modified
?Class 3 : referenced, modified

?removes a page at random from the lowest
numbered nonempty class

Figure 8.18 The clock page replacement algorithm

Replacement Policy

?NFU (Not Frequently Used)
?reference bit (R) and software counter
?timer interrupt
?periodically add R bit (0 or 1) to the counter

?the counters are an attempt to keep track of
how often each page had been referenced
?when a page fault occurs, the page with the

lowest counter is chosen for replacement

Replacement Policy

?Aging (NFU with aging)
?timer interrupt
?periodically add R bit (0 or 1) to the leftmost bit of

the counter, rather than the rightmost bit
?counter is shifted right 1 bit before the R bit is

added in

?when a page fault occurs, the page with the
lowest counter is chosen for replacement

Resident Set Management

?Fixed-allocation
?gives a process a fixed number of pages

within which to execute
?when a page fault occurs, one of the pages

of that process must be replaced

?Variable-allocation
?number of pages allocated to a process

varies over the lifetime of the process

Resident Set Management

Number of frames allocated
to process is fixed.
Page to be replaced is chosen
from among the frames
allocated to that process

The number of frames
allocated to a process may be
changed from time to time, to
maintain the working set of the
process.
Page to be replaced is chosen
from among the frames
allocated to that process

Not possible

Page to be replaced is chosen
from all available frames in
main memory; this causes the
size of the resident set of
processes to vary

Local Replacement Global Replacement

Fixed Allocation

Variable Allocation

Resident Set Management

?Variable-allocation, local scope
?when a new process is loaded into main memory,

allocate to it a certain number of page frames
?when a page fault occurs, select the page to replace

from among the resident set of the faulting process
?from time to time, reevaluate the allocation provided

to the process, and increase or decrease

?key elements of this strategy are the resident
set size and the timing of changes

Working Set Strategy

?Working Set : W(t, ?)
?the set of pages in the most recent ?page

references
??: working set window
?the working set size
?nondecreasing function of the window size

?W(t, ?+ 1) ? W(t, ?)
?1 <= |W(t, ?)| <= min(?, N)

Figure 8.19 Working set of process as defined by window size

Working Set Strategy

?Working Set Policy
?monitor the working set of each process
?periodically remove from the resident set of a

process those pages that are not in its
working set
?a process may execute only if its working set

is in main memory

Problems with Working Set

?The past does not always predict the
future
?A true measurement of working set is

impractical(too much overhead)
?Optimal value of ?is unknown and in any

case would vary

PFF algorithm

?Page Fault Frequency algorithm
?an attempt to approximate the working set

strategy
?use bit is set to 1 when a page is accessed
?a threshold F is defined
?when a page fault occurs, OS notes the time

since the last page fault
?if the amount of time since the last page fault is

less than F, a page is added to the resident set
?otherwise, discard all pages with a use bit of zero
?reset the use bit on the remaining pages to zero

Cleaning Policy

?Demand cleaning
?a page is written out only when it has been

selected for replacement

?Precleaning
?pages are written out in batches

Cleaning Policy

?Better approach uses page buffering
?Replaced pages are placed in two lists
?modified and unmodified

?Pages in the modified list are periodically
written out in batches
?Pages in the unmodified list are either

reclaimed if referenced again or lost when its
frame is assigned to another page

Load Control

?Determines the number of processes that
will be resident in main memory
?Too few processes, many occasions when

all processes will be blocked and
processor will be idle
?Too many processes will lead to thrashing

Load Control

?Process suspension
?Lowest priority process
?Faulting process
?this process does not have its working set in

main memory so it will be blocked anyway

?Last process activated
?this process is least likely to have its working

set resident

Load Control

?Process with smallest resident set
?this process requires the least future effort to

reload

?Largest process
?obtains the most free frames

?Process with the largest remaining execution
window

UNIX and Solaris Memory
Management

?Paging system for user processes
?Page table
?Disk block descriptor
?Page frame data table
?Swap-use table

?Kernel memory allocator for memory
allocation for the kernel

UNIX and Solaris Memory
Management

?Data Structures
?Page table - one per process
?Disk block descriptor - describes the disk

copy of the virtual page
?Page frame data table - describes each frame

of real memory
?Swap-use table - one for each swap device

Page Table Entry

UNIX and Solaris Memory
Management

?Page Replacement
?refinement of the clock policy known as the two-

handed clock algorithm
?uses the reference bit
?set to 0 when the page is first brought in
?set to 1 when the page is referenced

?fronthand sweeps through the pages and sets the
reference bit to 0
?sometime later, backhand sweeps through the pages

and collects the pages with reference bit 0

Figure 8.23 Two-handed clock page replacement algorithm

UNIX and Solaris Memory
Management

?Kernel Memory Allocator
?kernel generates and destroys small tables

and buffers frequently during execution
?they require dynamic memory allocation

?most of these blocks are significantly smaller
than the typical machine page size
?paging mechanism is inefficient here

?in SVR4, modification of the buddy system is
used

Linux Memory Management

?Linux virtual memory
?Virtual memory addressing(3 level scheme)
?Page directory
?Page middle directory
?Page table

?Virtual address consists of four fields

?Page allocation
?buddy system is used
?to enhance the efficiency of reading and writing,

Linux defines a mechanism for dealing with
contiguous blocks of pages mapped into
contiguous blocks of page frames

?Page replacement algorithm
?modified clock algorithm is used
?aging is considered

Linux Memory Management

Windows 2000
Memory Management

?W2K virtual address map
?each process has a 32-bit address space
?2 GB for user process
?2 GB for system space which is shared by all

processes

Windows 2000
Memory Management

?W2K Paging
?a page can be in one of 3 states
?available
?pages not currently used by this process

?reserved
?reserved but not counted against the process’s memory

quota

?committed
?pages for which the virtual memory manager has set

aside space in its paging file

