Virtual Memory

Chapter 8

Contents

Hardware and control structures
Operating system software

Unix and Solaris memory management
Linux memory management

Windows 2000 memory management

Characteristics of simple
Paging and Segmentation

Memory references are dynamically translated
Into physical addresses at run time

a process may be swapped in and out of main
memory such that it occupies different regions
A process may be broken up into pieces that

do not need to be located contiguously in main
memory

Is It necessary that all the pages of a process
be in main memory during execution?

Execution of a Program

Operating system brings into main memory a
few pieces of the program
resident set - portion of process that is in main
memaory

An Iinterrupt Is generated when an address Is
needed that is not In main memory

operating system places the process in a blocking
state

Execution of a Program

Piece of process that contains the logical
address Is brought into main memory

operating system issues a disk 1/0 Read
request

another process Is dispatched to run while
the disk 1/0 takes place

an interrupt Is issued when disk 1/0 complete

which causes the operating system to place
the affected process in the Ready state

Advantages of This
Maneuver

More processes may be maintained in main
memory
only load in some of the pieces of each process

with so many processes in main memory, it is very
likely a process will be in the Ready state at any
particular time
It Is possible for a process to be larger than
all the main memory

programmer is dealing with memory size of the
hard disk

Advantages of This
Maneuver

It would be wasteful to load in many
pieces of the process when only a few
pieces will be used

Time can be saved because unused pieces
are not swapped in and out of memory

Types of Memory

Real memory
main memory

Virtual memory

memory on disk

allows for effective multiprogramming and
relieves the user of tight constraints of main

memory

Thrashing

Swapping out a piece of a process just
before that piece Is needed

The processor spends most of its time
swapping pieces rather than executing
user instructions

Principle of Locality

Program and data references within a
process tend to cluster

Only a few pieces of a process will be
needed over a short period of time

Possible to make intelligent guesses about
which pieces will be needed in the future

This suggests that virtual memory may
work efficiently

Support Needed for
Virtual Memory

Hardware must support paging and
segmentation

OS must be able to manage the

movement of pages and/or segments
between secondary memory and main
memory

VM Paging

Each process has its own page table

Each page table entry contains the frame
number of the corresponding page In
main memory

A bit Is needed to indicate whether the
page IS In main memory or not

Modify Bit in Page Table

A bit Is needed to indicate If the page has
been altered since It was last loaded into
main memory

If no change has been made, the page
does not have to be written to the disk
when It needs to be swapped out

Page Table Entries

Virtual Address

| Page Number ‘ Offset I

Page Table Entry

|P‘ﬂ‘ﬂlher Control Bits‘ Frame Number I

(a) Paging only

Virtual Address

Page #

Offset

Register

Page Table Pir

Page#

Program

Frame # Offset
F 3
Page Table
| Frame #

Paging Mechanism

Frame

Offset } Page

O

Main Memory

Figure 8.3 Addresstrandation in a paging system

Page Table Structure

The entire page table may take up too much
main memory
In VAX, each process can have up to 2 GB of memory
If page size is 512 byte, we need 222 page table
entries
Page tables can also be stored Iin virtual
memory

When a process Is running, part of its page
table I1s In main memory

Page Table Structure

Two-level scheme

assume 32-bit address, 4 KB pages and 4 GB
address space
220 pages, requiring 4 MB
root page table with 219 PTEs occupying a
page(4 KB)
always remains in main memory
user page table is kept in virtual memory
they are mapped by a root page table

Two-Level Scheme for
32-bit Address

4-kbyte root
page table

4-Mbyte user I
page table

4-Gbyte user 1

address space

Figure 8.4 A Two-Level Hierarchical Page Table [JACQ98a]

Virtual Address

Offset

4-kbyte page
table {contains
1024 PTEs)

1
|
1
|
10 bits | 10 bits | 12 bits | Frame #
[n T
I
i
1
I Root page
table pte
1
1
|
1
|
1 i
1 f:E
|
1
|
I Root page table
: (contains 1024 PTEs)
1
Program : Paging Mechanism

Page
Frame

O

Main Memory

Figure8.5 Addresstrandation in atwo-level paging system

Page Table Structure

Inverted page table structure
used on Power PC and on IBM’s AS/400

page number portion of a virtual address is mapped
Into a hash table

hash table contains a pointer to the inverted page
table

there is one entry in the hash table and inverted page table
for each real memory page

fixed proportion of real memory is required for the tables
faster access to the page is possible

Virtual Address

Page # | Offset

Page Table
Page # Entry Chain
"
(hash)
Frame #|
——»
¥
Frame #| Offset
Hash Table Inverted Page Table Real Address

Figure 8.6 Inverted pagetablestructure

Translation Lookaside
Buffer(TLB)

Each virtual memory reference can cause
two physical memory accesses

one to fetch the page table entry
one to fetch the data

To overcome this problem a special cache
IS set up for page table entries

called a TLB - Translation Lookaside Buffer

TLB

Contains page table entries that have
been most recently used

Works similar to a memory cache

TLB(Operations)

Glven a virtual address, processor
examines the TLB

If page table entry is present (a hit), the
frame number is retrieved and the real
address is formed

If page table entry Is not found in the TLB
(a miss), the page number Is used to
Index the process page table

TLB(Operations)

Check If page Is already In main memory
If not in main memory a page fault is issued

TLB Is updated to include the new page
entry

Virtual Address

Main Memory

W L

El'l'l'acetl
.‘_

Page # | Offset
Translation
Lookaside Buffer
—
b
—: TLB hit
—b
—
—p
Page Table
TLE miss
——
h J h 4
Frarne#l Offset
Real Address
Page fault

L@

Secondary
Memory

Figure 8.7 Use of a Translation Lookaside Buffer

Reforn to ‘

Fanled Instruction
* CPU checks the TLE

Page Famlt
Hamnd ling Boutine

6 Imstructs CPLU
o Hend the Pape
Troom Disk

CPL Activaies
1A Hardware

Update TLE

CPU Generates
Physical Addmess

W
Mo Page Tables
Updated

Figure 8.8 Operation of Paging and Translation Lookaskle Buffer (TLE) [FURHST7]

TLB Operation

Virtual Address

¥
| Page # | Offset |
TLB
TLE miss
TLB)
hit Cache Operation
Real Address
b4 £ l Y Hit v
Tag| Remainder i ‘alue
o :-| ag| emain EI| Cache >
L\—o—'_"‘—‘-Y—'—'——._,J
Miss |
D
¥/\ Main
Memory
Page Table
Value

A
Figure 8.10 TLB and cache operation

Page Size

Smaller page size, less amount of internal
fragmentation

Smaller page size, more pages required per
process

more pages per process means larger page tables

larger page tables means large portion of page tables
In virtual memory

Secondary memory devices favor a larger page
size for more efficient block transfer of data

Page Size and
Page Fault Rate

Small page size, large number of pages will be
found in main memory

As time goes on during execution, the pages in
memory will all contain portions of the process
near recent references

page faults low
Increased page size causes pages to contain
locations further from any recent reference

effect of the principle of locality is weakened and
page fault rate rise

page fault rate will begin to fall as the size of a page
approaches the size of the entire process

Page Fault Rate
Page Fault Rate

{a) Page Sire (b} Number of Page Frames Allocated

P = size of entire process
W= winrking set size

N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

Page Size and
TLB Performance

Multiple page sizes provide the flexibility
needed to effectively use a TLB

Large pages can be used for program
Instructions

Small pages can be used for thread stacks

But most operating system support only
one page size
page size affects many aspects of OS

Table 8.2 Example Page Sizes

Computer

Page Size

Atlas

Honeywell-Multics

IBM 370/XA and 370/ESA
VAX family

IBM AS/400

DEC Alpha

MIPS

UltraSPARC

Pentium

PowerPc

512 48-bit words
1024 36-bit word

4 Kbytes

512 bytes

512 bytes

& Kbytes

4 kbyes to 16 Mbytes
& Kbytes to 4 Mbytes
4 Kbytes or 4 Mbytes

4 Kbytes

VM Segmentation

May be unequal, dynamic size
Advantages
Simplifies handling of growing data structures
OS will expand or shrink the segment as needed

Allows programs to be altered and recompiled
iIndependently

Used for sharing data among processes

Lends itself to protection

a segment can be constructed to contain a well-defined set
of programs or data

Segment Tables

Address : (segment number, offset)

Each entry contains the starting address of the
corresponding segment in main memory

Each entry contains the length of the segment

A bit iIs needed to determine if segment is
already in main memory

A bit is needed to determine if the segment has
been modified since It was loaded in main
memory

Segment Table Entries

Virtual Address

I Segment Number ‘ Offset I

Segment Table Entry

PIM|Other Control Bits Length Segment Base

(b) Segmentation only

Virtual Address

Seg #

Offset=d

Register

Seg Table Ptr

Program

Segment Table

Base +d

Segment Table

| Length | Base

Segmentation Mechanism

Segment

0

Main Memory

Figure 8.12 Addresstrandation in a segmentation system

Combined Paging and
Segmentation

Paging is transparent to the programmer
Paging eliminates external fragmentation
Segmentation is visible to the programmer

Segmentation allows for growing data
structures, modularity, and support for sharing
and protection

Each segment is broken into fixed-size pages

Combined Segmentation
and Paging

Virtual Address

Segment Number Page Number Offset
Segment Table Entry
Other Control Bits Length Segment Base
Page Table Entry

IP‘ﬂ‘Dther Control Bits‘ Frame Number I P= present bit
M = Modified bit

(¢) Combined segmentation and paging

i

Frame #

Offset

| |
1 1
Virtual Address i i
1 1
Seg# | Page# | Offset | g I
| |
]]
i i
1 1
1 |Seg Tahle Ptr |
i] i
1 Segment 1
1 Table 1
| |
| |
i g i
7
| |
| |
1 1
| |
1 1
| |
1 1
Program i Segmentation 1
: Mechanism :

Page
Table

Paging

Mechanism

Frame

Offset % Page

Y

Main Memory

Figure 8.12 Addresstrandgation in a sesgmentation/paging system

OS Software

Design of memory-management depends
on the following areas of choice

whether or not to use virtual memory
use of paging or segmentation or both

algorithms employed for various aspects of
memory management

see next slide

Table 8.3 Operating System Policies for Virtual Memory

Fetch Policy
Demand
Prepaging

Placement Policy

Replacement Policy
Basic Algorithms
Optimal
Least recently used (LRU)
First-in-first-out (FIFO)
Clock
Page buffering

Resident Set Management
Resident set size
Fixed
Variable
Replacement Scope
Global
Local

Cleaning Policy
Demand
Precleaning

Load Control
Degree of multiEngramming

Fetch Policy

Determines when a page should be
brought into memory
Demand paging only brings pages into main
memory when a reference Is made to a
location on the page

many page faults when process first started

Prepaging brings in more pages than needed

more efficient to bring in pages that reside
contiguously on the disk

Placement Policy

Determines where in real memory a
process piece Is to reside

Case of the segmentation system
best-fit, first-fit, next-fit...

Case of the paging system
nothing to consider

Replacement Policy

Deals with the selection of a page In
memory to be replaced when a new page
IS brought In

Frame locking used for frames that may
not be replaced

kernel and key control structures of OS
1/0 buffers

Algorithm in 5.9 should be changed

FROM

TO

boolean choosing[n];
int number[n];
while(true)
{
choosing[i] = true;
for (intj =0; j <>n: j++)
{
while(choosing[j])
{}
while((number[j] '=0) & &
(number(j],j) <> (number[i], i))
{}
/* critical section */
number[i] =0;
[* remainder */

boolean choosing[n];
int number[n];
while(true)
{
choosing[i] = true;
for (intj =0; j <>n: j++)

while(choosing([j])

{}

while((number[j] '=0) & &
(number(j],j) < (number(i], 1))
{}

/* critical section */
number[i] =0;
[* remainder */

Replacement Policy

Basic algorithms
Optimal
Least recently used(LRU)
First-in-first-out(FIFO)
Clock

Replacement Policy

Optimal algorithm

selects for replacement that page for which
the time to the next reference is the longest

results in the fewest number of page faults

Impossible to have perfect knowledge of
future events: impossible to implement

used to judge other algorithms

Replacement Policy

Least Recently Used (LRU)

Replaces the page that has not been
referenced for the longest time

By the principle of locality, this should be the
page least likely to be referenced Iin the near
future

Each page need to be tagged with the time
of last reference

require a great deal of overhead.

Replacement Policy

First-1n, First-Out (FIFO)
Simplest replacement policy to implement

Treats page frames allocated to a process as
a circular buffer

Page that has been in memory the longest Is
replaced
these pages may be needed again very soon

Replacement Policy

Second Chance algorithm
FIFO with use-bit (or reference bit, R)
avoid the problem of throwing out heavily used
pages
If the R bit is 0, the page Is both old and unused,
so it Is replaced immediately

If the R bit is 1, the bit is cleared, the page is put
onto the end of the list of pages, and its load
time is updated as though it had just arrived In

memory

Inefficient because It is constantly moving pages
around on its list

Replacement Policy

Clock algorithm
Additional bit called a use bit

When a page is first loaded in memory, use
bitissetto 1l

When the page is referenced, use bit is set to
1

When it is time to replace a page, the first
frame encountered with the use bit set to O Is

replaced.

During the search for replacement, each use
bit with 1 is changed to O

First frame in

circular buffer of
n-1 0 frames that are
candidates for replacement

next frame page 45 2
pointer ' '

(a) State of buffer just prior to a page replacement

Example 8.16 Example of clock policy operation

(b) State of buffer just after the next page replacement

Example 8.16 Example of clock policy operation

Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
2 2 2 2 2 2 4 4 4 2 2 2
OPT 3 3 3 3 3 3 3 3 3 3 3
1 5 5 5 5 5 5 5 5
I F I
2 2 2 2 2 2 2 2 3 3 3 3
LRU 3 3 3 5 5 5 5 5 5 5 5
1 1 1 4 4 4 2 2 2
F F F F
2 2 2 2 5 5 5 5 3 3 3 3
FIFO 3 3 3 3 2 2 2 2 2 5 5
1 1 1 4 4 4 4 4 2
F F F F F F
. . 2% 2% 2% |l 2% 5% 5% | 5% | 5% 3% 3¢ | 3= | 3%
CLOCK —» 3 3 3w 3 2 2% 2% | W 2 | 2% 2 2
[b - 1* 1 o 1 4% 4% 4 4 5% 5%
F F F F F

Figure 8.15 Behavior of four pagereplacement algorithms

E

=

2 . FIFO
=

< CLOCK
Z 30

g 25 LRU
5 20

- OPT
£ 15

E

£ 10

¥ 3

=

0 =%

8 10 12 14

=21

Number of Frames Allocated

Figure 8.17 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

Replacement Policy

NRU (Not Recently Used)
reference bit (R) and modified bit (M)

timer interrupt : periodically clear R bit
Class O : not recently referenced, not modified
Class 1 : not recently referenced, modified
Class 2 : referenced, not modified
Class 3 : referenced, modified

removes a page at random from the lowest
numbered nonempty class

First frame in
circular buffer
for this process

n-—1 0

Page 7

Page 9
nol accessed

not accessed 1
recentlys recently; 2 o
modified : age

L nol accessed

recently;
not modifie

Page 13
nol accessed
recently:

nol modilied

9

Page 95
accessed
recently;
nol modified

Page 47

., Page %6

not accessed (N accessed

] ! " *
rn:a-u:-aﬂ.-nll;o,j] renenll_\e,. X 3 Last
8 not modifie not modified
replaced

Mext
replaced Page 46 Page 97

nol accessed
recently;
modified

not accessed
recently;
modified

Page 45
Pﬂgﬂ 121 aceessed
accessed
recently;
not modified

recently;
not modified

Figure 8.18 The clock pagereplacement algorithm

Replacement Policy

NFU (Not Frequently Used)
reference bit (R) and software counter

timer interrupt
periodically add R bit (O or 1) to the counter

the counters are an attempt to keep track of
how often each page had been referenced

when a page fault occurs, the page with the
lowest counter Is chosen for replacement

Replacement Policy

Aging (NFU with aging)
timer interrupt

periodically add R bit (0 or 1) to the leftmost bit of
the counter, rather than the rightmost bit

counter is shifted right 1 bit before the R bit is
added In
when a page fault occurs, the page with the
lowest counter is chosen for replacement

Resident Set Management

Fixed-allocation

gives a process a fixed number of pages
within which to execute

when a page fault occurs, one of the pages
of that process must be replaced

Variable-allocation

number of pages allocated to a process
varies over the lifetime of the process

Resident Set Management

L ocal Replacement

Global Replacement

Fixed Allocation

Number of frames allocated
to processisfixed.

Pageto bereplaced is chosen
from among the frames
allocated to that process

Not possible

Variable Allocation

The number of frames
allocated to a process may be
changed from timeto time, to
maintain the working set of the
process.

Page to bereplaced is chosen
from among the frames
allocated to that process

Pageto bereplaced is chosen
from all availableframesin
main memory; thiscausesthe
size of theresident set of
processesto vary

Resident Set Management

Variable-allocation, local scope

when a new process is loaded into main memory,
allocate to it a certain number of page frames

when a page fault occurs, select the page to replace
from among the resident set of the faulting process

from time to time, reevaluate the allocation provided
to the process, and increase or decrease

key elements of this strategy are the resident
set size and the timing of changes

Working Set Strategy

Working Set : W(t, ?)

the set of pages in the most recent ?page

references

?. working set window

the working set size
nondecreasing function of the window size
W(t, 2+ 1) ? W(t, ?)
1 <= |W(t, ?)| <= min(?, N)

[ISequence of

Ref': age Window Size, A

2 3 4 5
24 24 24 24 24
5 24 15 24 15 24 15 24 15
18 1518 2415 18 2415 18 24 15 18
23 18 23 15 18 23 24151823 | 24151823
24 23 24 18 23 24 . .
17 24 17 2324 17 18232417 | 15182324 17
18 17 18 2417 18 . 1823 24 17
24 18 24 . 2417 18 .
18 . 1824 . 2417 18
17 18 17 2418 17 . .
17 17 18 17 . .
15 1715 1715 18 17 15 2418 17 15
24 1524 17 15 24 17 15 24 .
17 2417 . . 171524
24 . 2417 . .
18 24 18 1724 18 1724 18 1517 24 18

Figure 8.19 Working set of process as defined by window size

Working

Set Strategy

Working Set Policy
monitor the working set of each process

periodica
process t

ly remove from the resident set of a

nose pages that are not in Its

working set

a process may execute only if its working set
IS IN main memory

Problems with Working Set

The past does not always predict the
future

A true measurement of working set Is
Impractical(too much overhead)

Optimal value of ?is unknown and in any
case would vary

PFF algorithm

Page Fault Frequency algorithm

an attempt to approximate the working set
strategy

use bit is set to 1 when a page Is accessed
a threshold F is defined
when a page fault occurs, OS notes the time

since the last page fault

If the amount of time since the last page fault is
less than F, a page is added to the resident set

otherwise, discard all pages with a use bit of zero
reset the use bit on the remaining pages to zero

Cleaning Policy

Demand cleaning

a page Is written out only when it has been
selected for replacement

Precleaning
pages are written out in batches

Cleaning Policy

Better approach uses page buffering

Replaced pages are placed in two lists
modified and unmodified

Pages in the modified list are periodically
written out In batches

Pages in the unmodified list are either
reclaimed if referenced again or lost when its
frame Is assigned to another page

Load Control

Determines the number of processes that
will be resident in main memory

Too few processes, many occasions when
all processes will be blocked and
processor will be idle

Too many processes will lead to thrashing

Processor Utilization

Multiprogramming Level

Figure 8.21 Multiprogramming Effects

Load Control

Process suspension
Lowest priority process

Faulting process

this process does not have its working set in
main memory so it will be blocked anyway

Last process activated

this process is least likely to have its working
set resident

Load Control

Process with smallest resident set

this process requires the least future effort to
reload

Largest process
obtains the most free frames

Process with the largest remaining execution
window

UNIX and Solaris Memory
Management

Paging system for user processes
Page table

DIsk block descriptor

Page frame data table

Swap-use table

Kernel memory allocator for memory
allocation for the kernel

UNIX and Solaris Memory
Management

Data Structures
Page table - one per process

Disk block descriptor - describes the disk
copy of the virtual page

Page frame data table - describes each frame
of real memory

Swap-use table - one for each swap device

Page frame number

(a) Page table entry

Swap device number | Device block number Type of storage

(b) Disk block descriptor

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of this
field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes mto the page, a separate copy
of the page must first be made for all other processes that share the page. This feature allows the copy
operation to be deferred until necessary and avoided in cases where it turns out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to zero when the page is first loaded and may be
periodically reset by the page replacement algorithm.

Valid
Indicates page 1s in main memory.

Protect
Indicates whether write operation is allowed.

Page state Reference| Logical Block Pfdata

device number pointer

(c) Page frame data table entry

Reference | Page/storage
count unit number

(d) Swap-use table entry

Figure 8.22 UNIX SVR4 Memory Management Formats

Page Frame Data Table Entry

Page State
Indicates whether this frame is available or has an associated page. In the latter case, the
status of the page is specified: on swap device, in executable file, or DMA in progress.

Reference count

Number of processes that reference the page.

Logical device

Logical device that contains a copy of the page.

Block number

Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more than
one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there 15 an indication as to whether the
virtual memory to be allocated should be cleared first.

Swap-use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.

UNIX and Solaris Memory
Management

Page Replacement

refinement of the clock policy known as the two-
handed clock algorithm

uses the reference bit
set to O when the page is first brought in
set to 1 when the page is referenced

fronthand sweeps through the pages and sets the
reference bitto 0

sometime later, backhand sweeps through the pages
and collects the pages with reference bit O

End of Beginning
page list of page list

handspread

Figure 8.23 Two-handed clock page replacement algorithm

UNIX and Solaris Memory
Management

Kernel Memory Allocator

kernel generates and destroys small tables
and buffers frequently during execution

they require dynamic memory allocation

most of these blocks are significantly smaller
than the typical machine page size
paging mechanism is inefficient here

In SVR4, modification of the buddy system Is
used

Linux Memory Management

Linux virtual memory

Virtual memory addressing(3 level scheme)
Page directory
Page middle directory
Page table

Virtual address consists of four fields

Linux Memory Management

Page allocation

buddy system Is used

to enhance the efficiency of reading and writing,
Linux defines a mechanism for dealing with
contiguous blocks of pages mapped into
contiguous blocks of page frames

Page replacement algorithm

modified clock algorithm is used
aging is considered

Windows 2000
Memory Management

W2K virtual address map

each process has a 32-bit address space
2 GB for user process

2 GB for system space which is shared by all
processes

6d-Kbyte region for _':'. i
MNULL-pointer assignments

iinaccessible)
2-Chyle user
address space
(unreserved, usable)
6d-Kbyle region for >
bad pointer assignments I
(imaccessible)

2-Chyte region for
the operating system
i Inacess ihle)

O0xFFFFFFFF v

Figure 8.25 Windows 2000 Default Virtual Address Space

Windows 2000
Memory Management

W2K Paging
a page can be in one of 3 states

available
pages not currently used by this process

reserved

reserved but not counted against the process’s memory
guota

committed

pages for which the virtual memory manager has set
aside space in its paging file

