
Uniprocessor Scheduling

Chapter 9

Contents

?Types of scheduling
?Scheduling algorithms
?Traditional Unix scheduling

Types of Scheduling

?Long-term
?performed when new process is created
?the decision to add to the pool of processes

to be executed

?Medium-term
?the decision to add to the number of

processes that are partially or fully in main
memory

Types of Scheduling

?Short-term
?the decision as to which ready process will be

executed by the processor

?I/O
?the decision as to which process’s pending

I/O request shall be handled by available I/O
device

Long-Term Scheduling

?Determines which programs are admitted
to the system for processing
?Controls the degree of multiprogramming
?more processes, smaller percentage of time

each process is executed

Medium-Term Scheduling

?Part of the swapping function
?Swapping-in decision is based on the need

to manage the degree of multiprogramming

Short-Term Scheduling

?Short-term scheduler is known as the
dispatcher
?Invoked when following events occur
?clock interrupts
?I/O interrupts
?operating system calls
?signals

Short-Tem Scheduling
Criteria

?User-oriented, Performance Related
?User-oriented, Other
?System-oriented, Performance Related
?System-oriented,Other

Short-Tem Scheduling
Criteria

?User-oriented, Performance Related
?Response Time
?time from the submission of a request until the

response

?Turnaround Time
?interval of time between the submission of a

process and its completion

?Deadline
?meet the deadline

Short-Tem Scheduling
Criteria

?User-oriented, Other
?Predictability
?a given job should run in about the same amount

of time and at about the same cost regardless of
the load on the system
?a wide variation in response time or turnaround

time is distracting to users

Short-Term Scheduling
Criteria

?System-oriented, Performance Related
?Throughput
?number of processes completed per unit of time
?a measure of how much work is being done

?Processor Utilization
?the percentage of time that the processor is busy

Short-Term Scheduling
Criteria

?System-oriented,Other
?Fairness
?processes should be treated the same
?no process should suffer starvation

?Enforcing Priorities
?when priorities are assigned, higher priority

process should be favored
?Balancing Resources
?keep the resources of the system busy

Use of Priorities

?Scheduler will always choose a process of
higher priority over one of lower priority
?Have multiple ready queues to represent

each level of priority
?Lower-priority may suffer starvation
?allow a process to change its priority based

on its age or execution history

Decision Mode

?Nonpreemptive
?Once a process is in the running state, it will continue

until it terminates or blocks itself for I/O

?Preemptive
?Currently running process may be interrupted and

moved to the Ready state by OS
?Allows for better service since any one process

cannot monopolize the processor for very long

Scheduling Algorithms

?First-Come-First-Served
?Round-Robin
?Shortest Process Next
?Shortest Remaining Time
?Highest Response Ratio Next
?Feedback

Process Scheduling
Example

First-Come-First-Served
(FCFS)

?As each process becomes ready, it joins the
Ready queue
?When the current process ceases to execute,

the oldest process in the Ready queue is
selected

0 5 10 15 20

1

2

3

4

5

First-Come-First-Served
(FCFS)

?Perform much better for long processes
?a short process may have to wait a very long

time before it can execute

?Favors CPU-bound processes
?I/O-bound processes have to wait until CPU-

bound process completes

?Not an attractive method

Round-Robin

?Uses preemption based on a clock
?An amount of time is determined that allows

each process to use the processor for that
length of time

0 5 10 15 20

1

2

3

4

5

Round-Robin

?Clock interrupt is generated at periodic intervals
?when an interrupt occurs, the currently running

process is placed in the read queue
?next ready job is selected
?known as time slicing

?Principal design issue is the length of time
quantum
?should be slightly greater than the time required for a

typical interaction

Round-Robin

?Relatively favors the processor-bound job
?I/O-bound process uses a processor for a short

period and then is blocked for I/O
?after waking up, it joins the ready queue

?Poor performance for I/O-bound processes
?inefficient use of I/O devices
?increase in the variance of response time

?Virtual Round-Robin Scheduler

Time-out

Figure 9.7 Queuing diagram for virtual round-robin scheduler

Shortest Process Next

?Nonpreemptive policy
?Process with shortest expected processing time

is selected next
?Short process jumps ahead of longer processes

0 5 10 15 20

1

2

3

4

5

Shortest Process Next

?Need to estimate the required processing time
?in a production environment, same jobs run

frequently and statistics may be gathered
?if estimated time for process not correct, the

operating system may abort it

?Predictability of longer processes is reduced
?Possibility of starvation for longer processes

Shortest Remaining Time

?Preemptive version of shortest process
next policy
?Must estimate processing time

0 5 10 15 20

1

2

3

4

5

Highest Response Ratio
Next (HRRN)

?Choose next process with the highest ratio
time spent waiting + expected service time

expected service time

1

2

3

4

5

0 5 10 15 20

Highest Response Ratio
Next (HRRN)

?Minimum value of ratio is 1.0
?Count for the age of the process
?generally shorter jobs are favored
?a smaller denominator yields a larger ratio

?aging without service increases the ratio so
that a longer process will eventually get past
competing shorter jobs

Feedback

?Used when we don’t know remaining time
process needs to execute
?decision based on the past
?penalize jobs that have been running longer

0 5 10 15 20

1

2

3

4

5

Feedback

?Process is demoted to the next lower-
priority queue each time it returns to the
ready queue
?Longer processes drift downward
?To avoid starvation, we can vary the

preemption times according to the queue

Figure 9.10 Feedback scheduling

Figure 9.5 A comparison of scheduling policies

Figure 9.5 A comparison of scheduling policies

Fair-share Scheduling

?User’s application runs as a collection of
processes (threads)
?User is concerned about the performance

of the application
?Need to make scheduling decisions based

on groups of processes

UNIX Scheduling

?Multilevel feedback using round-robin
within each of the priority queues
?Priorities are recomputed once per second
?Base priority divides all processes into

fixed bands of priority levels

UNIX Scheduling

?Bands in decreasing order of priority
?Swapper
?Block I/O device control
?File manipulation
?Character I/O device control
?User processes

?Bands of process priorities
?user and kernel priorities

Swapper

Waiting for Disk IO

Waiting for Buffer

Waiting for Inode

Waiting for TTY Input

Waiting for TTY Output

Waiting for Child Exit

User Level 0

User Level 1

-
-
-

User Level n

Priority LevelsKernel Mode
Priorities

Not

Interruptible

Interruptible

User Mode
Priorities

Threshold Priorities

Processes

UNIX Scheduling

?Formulas to calculate the priority

CPUj(i) =

Pj(i) = Basej + + nicej

CPUj(i -1)

2

CPUj(i)

2

CPUj(i -1) = Measure of processor utilization by process j through interval i
Pj(i) = Priority of process j at beginning of interval i: lower values equal higher priorities
Basej = Base priority of process j
nicej = user-controllable adjustment factor

