
Multiprocessor and
Real-Time Scheduling

Chapter 10

Contents

?Multiprocessor scheduling
?Real-Time scheduling
?real-time systems and real-time OS
?real-time scheduling

?Linux scheduling
?Unix SVR4 scheduling
?Windows 2000 scheduling

Classifications of
Multiprocessor

?Loosely coupled multiprocessor
?each processor has its own memory and I/O channels

?Functionally specialized processors
?such as I/O processor
?controlled by a master processor

?Tightly coupled multiprocessing
?processors share main memory
?controlled by an operating system

Synchronization Granularity

?Frequency of synchronization between processes

?Degree of granularity
?Independent Parallelism
?Very Coarse Parallelism
?Coarse Parallelism
?Medium Parallelism
?Fine-Grained Parallelism

Independent Parallelism

?No synchronization among processes
?Multiple unrelated processes
?Typical example in a time sharing system
?one application is word processing
?the other one is using a spreadsheet

?Average response time to the users will
be less than that of the uniprocessor
system

Very Coarse Parallelism

?Distributed processing across network
nodes to form a single computing
environment
?Good when there is infrequent interaction

among processes
?overhead of network would slow down

communications

Coarse Parallelism

?Multiprocessing of concurrent processes in
a multiprogramming environment
?similar to running many processes on one

processor except it is spread to more
processors

Medium Parallelism

?Parallel processing or multitasking within
a single application
?single application is a collection of threads
?threads in a process usually interact so

frequently

Fine-Grained Parallelism

?Much more complex use of parallelism
than is found in the use of threads
?parallelism inherent in a single instruction

stream

?Highly parallel applications

Table 10.1 Synchronization granularity and processes

Design Issues of
Multiprocessor Scheduling

?Assignment of processes to processors
?Use of multiprogramming on individual

processors
?Actual dispatching of a process

Assignment of Processes
to Processors

?Assign processes to processors on demand
?could be static or dynamic
?assigned to one processor from activation

until its completion
?Means of assigning processes to

processors
?master/slave architecture
?peer architecture

Assignment of Processes
to Processors

?Master/slave architecture
?Key kernel functions always run on a particular

processor
?Master is responsible for scheduling

?Slaves only execute user programs
?Slave sends service request to the master

?Disadvantages
?Failure of master brings down whole system
?Master can become a performance bottleneck

Assignment of Processes
to Processors

?Peer architecture
?Operating system can execute on any

processor
?Each processor does self-scheduling

?Complicates the operating system
?must ensure that two processors do not choose

the same process
?need to resolve and synchronize competing claims

to resources

Use of Multiprogramming
on Individual Processors

?In the environment of coarse-grained or
independent synchronization granularity, use of
multiprogramming is natural
?For medium-grained applications running on a

multiprocessor, situation is less clear
?it is no longer paramount that every single processor

be busy as much as possible
?an application that consists of a number of threads

may run poorly unless all of its threads are available
to run simultaneously

Dispatching a Process

?Actual selection of a process to run
?uniprocessor system
?use sophisticated algorithms to improve

performance

?multiprocessor system
?simpler approaches may be more effective with

less overhead

Process Scheduling

?Traditional multiprocessor system
?processes are not dedicated to processors
?single queue for all processors
?multiple queues are used for the case of

using priorities
?all queues feed to the common pool of processors

Multiprocessor
Thread Scheduling

?An application can be a set of threads
that cooperate and execute concurrently
in the same address space
?Threads running on separate processors

yields a dramatic gain in performance

Multiprocessor
Thread Scheduling
?General approaches for scheduling
?Load sharing
?processes are not assigned to a particular processor
?a global queue is maintained and each processor selects a

thread from the queue

?Gang scheduling
?a set of related threads is scheduled to run on a set of

processors at the same time

?Dedicated processor assignment
?threads are assigned to a specific processor

?Dynamic scheduling
?number of threads in a process can be altered during course

of execution

Load Sharing

?A global queue of ready threads is
maintained
?load is distributed evenly across the

processors
?assures no processor is idle

?no centralized scheduler required
?when a processor is available, scheduling routine

is run on that processor

Disadvantages of Load
Sharing

?Central queue needs mutual exclusion
?may be a bottleneck when more than one processor

looks for work at the same time

?Preempted threads are unlikely to resume
execution on the same processor
?cache use is less efficient

?It is unlikely that all threads of a program will
gain access to the processors at the same time

Gang Scheduling

?Simultaneous scheduling of threads that
make up a single process
?Useful for applications where performance

severely degrades when any part of the
application is not running
?Threads often need to synchronize with

each other

Figure 10.2 Example of scheduling groups with four and one threads

Dedicated Processor
Assignment

?An extreme form of gang scheduling
?dedicate a group of processors to an

application for the duration of it
?no multiprogramming
?some processors may be idle

?can it be efficient?
?in a highly parallel system, processor utilization is

no longer so important
?avoidance of process switching should result in a

substantial speedup of that program

Dynamic Scheduling

?Number of threads in a process may be altered
dynamically by the application
?When a job requests processors
?if there are idle processors, use them
?new job may be assigned to a processor that is used

by a job currently using more than one processor
?hold request until processor is available

?Upon release of processors
?new job will be given a processor before existing

running applications

Real-Time Systems

?Correctness of the system depends not only on
the logical result of the computation but also on
the time at which the results are produced
?each task has a deadline

?Tasks or processes attempt to control or react
to events that take place in the outside world
?these events occur in “real-time” and process must

be able to keep up with them

Real-Time Systems

?Hard real-time task
?a task that must meet its deadline

?Soft real-time task
?has an associated deadline that is desirable

but not mandatory

?Periodic task
?a task that must be executed periodically
?once per period T

?Aperiodic task

Real-Time Systems

?Control of laboratory experiments
?Process control plants
?Robotics
?Air traffic control
?Telecommunications
?Military command and control systems

Characteristics of Real-
Time Operating Systems

?Determinism
?Responsiveness
?User control
?Reliability
?Fail-soft operation

Characteristics of Real-
Time Operating Systems

?Determinism
?operations are performed at fixed,

predetermined times or within predetermined
time intervals
?concerned with how long the operating

system delays before acknowledging an
interrupt
?most of the requests for service are dictated by

external events and timings

Characteristics of Real-
Time Operating Systems

?Responsiveness
?how long, after acknowledgment, it takes the

operating system to service the interrupt
?aspects of responsiveness
?the amount of time to begin execution of the

interrupt
?the amount of time to perform the interrupt
?effect of interrupt nesting

Characteristics of Real-
Time Operating Systems

?User control
?user has much broader control over the

system
?user specify priority
?user specify paging and swapping
?what processes must always reside in main memory
?what disks algorithms to use

?specify what rights the processes have

Characteristics of Real-
Time Operating Systems

?Reliability
?degradation of performance may have

catastrophic consequences
?financial loss
?equipment damage
?loss of life

Characteristics of Real-
Time Operating Systems

?Fail-soft operation
?ability of a system to fail in such a way as to

preserve as much capability and data as
possible
?stability
?a real-time system is stable if, in cases where it is

impossible to meet all task deadlines, the system
will meet the deadlines of its most critical, highest-
priority tasks

Features of Real-Time
Operating Systems

?Fast context switch
?Small size
?Ability to respond to external interrupts

quickly
?Multitasking with interprocess

communication tools such as semaphores,
signals, and events
?Files that accumulate data at a fast rate

Features of Real-Time
Operating Systems

?Preemptive scheduling based on priority
?immediate preemption allows operating

system to respond to an interrupt quickly

?Minimization of intervals during which
interrupts are disabled
?Delay tasks for fixed amount of time
?Special alarms and timeouts

Scheduling of a
Real-Time Process

Scheduling of a
Real-Time Process

Scheduling of a
Real-Time Process

Scheduling of a
Real-Time Process

Quiz 3(20 points)

?Most operating systems have two
schemes for memory management. One
is for user processes and the other is for
kernel. Why is that?

?Explain the usage of ‘copy on write’ bit in
page table entry of Unix SVR4.

Real-Time Scheduling

?Classes of algorithms
?Static table-driven
?try to develop the complete schedule
?determines when a task must begin execution

?Static priority-driven preemptive
?traditional priority-driven scheduler can be used

?Dynamic planning-based
?an attempt is made to create a schedule that contains the

previously scheduled tasks as well as the new arrival

?Dynamic best effort
?when a task arrives, system assigns a priority based on the

characteristics of the task

Deadline Scheduling

?Information about a task
?ready time
?starting deadline : a time by which a task

must begin
?completion deadline
?processing time
?resource requirements
?priority
?subtask structure
?mandatory and optional subtask

Schedulability

?Let ????????????????????n?} be a task set
??i is said to be schedulable if it meets its

deadline all the time
?? is said to be schedulable if each task in ?

is schedulable

Earliest Deadline Scheduling

?At each scheduling points, the task with
the earliest deadline is selected to be run
next
?dynamic, priority-based preemptive scheduling
?applicable to both periodic and aperiodic tasks
?scheduling tasks with the earliest deadline

minimized the fraction of tasks that miss their
deadlines

Two Tasks

Rate Monotonic Scheduling

?Assigns priorities to tasks on the basis of
their periods
?highest-priority task is the one with the

shortest period
?applicable only to periodic tasks
?static, priority-based preemptive scheduling

Linux Scheduling

?Scheduling classes
?SCHED_FIFO: First-in-first-out real-time

threads
?SCHED_RR: Round-robin real-time threads
?SCHED_OTHER: Other, non-real-time threads
?traditional Unix scheduling algorithm is used here

?Within each class multiple priorities may
be used

Figure 10.9 Example of Linux scheduling

UNIX SVR4 Scheduling

?Set of 160 priority levels divided into
three priority classes
?real time(159 ~ 100)
?kernel(99 ~ 60)
?time-shared(59 ~ 0)

Figure 10.10 SVR4 priority classes

UNIX SVR4 Scheduling

?Scheduling
?Highest preference to real-time processes
?Next-highest to kernel-mode processes
?Lowest preference to other user-mode

processes

?processes at a given priority level are
executed in round-robin fashion

Windows 2000 Scheduling

?Priorities are organized into two bands or
classes
?Real time
?all threads have a fixed priority that never changes

?Variable
?thread’s priority may change during it’s lifetime

?each band consists of 16 priority levels
?Priority-driven preemptive scheduler

