File Management

Chapter 12

Contents

Overview

File organization and Access

File directories

File sharing

Record blocking

Secondary storage management
Unix file management

Windows 2000 file system

File Management

In most applications, the file is the central
element

Input to applications is by means of a file
Output is saved in a file for long-term storage

File management system is considered
part of the operating system

Terms Used with Files

Field
basic element of data
contains a single value
characterized by its length and data type

Record

collection of related fields

treated as a unit
Example: employee record

Terms Used with Files

File
collection of similar records
treated as a single entity by users
have unique names

access control apply at this level

In some systems, such controls are enforced at
the record level

Database
collection of related data
consists of one or more types of files

Typical Operations on Files

Retrieve All
Retrieve One
Retrieve Next
Retrieve Previous
Insert_ One
Delete_One
Update One
Retrieve Few

File Management System

Set of system software that provides
services to users and applications In the
use of files

the only way that a user or application may

access files is through the file management
system

ODbjectives for a
File Management System

Meet the data management needs and
requirements of the user

Guarantee that the data in the file are
valid
Optimize performance

throughput and response time

Provide 1/0 support for a variety of
storage device types

ODbjectives for a
File Management System

Minimize or eliminate the potential for lost
or destroyed data

Provide a standardized set of 1/0 interface
routines

Provide 1/0 support for multiple users

Minimal Set of Requirements

Each user should be able to create,
delete, read, and change files

Each user may have controlled access to
other users’ files

Each user may control what type of
accesses are allowed to the user’s files

Each user should be able to restructure
the user’s files in a form appropriate to
the problem

Minimal Set of Requirements

Each user should be able to move data
between files

Each user should be able to back up and
recover the user’s files in case of damage

Each user should be able to access the
user’s files by using symbolic names

[User ngram]

Indexed
Sequential

Pile Sequential Indexed Hashed

Logical I/O

Basic I/O Supervisor

Basic File System

Disk Device Driver Tape Device Driver

Figure 12.1 File System Software Architecture [GROS86]

Criteria for File Organization

Rapid access

Ease of update
Economy of storage
Simple maintenance
Reliability

Criteria for File Organization

These criteria may conflict

for economy of storage, there should be
minimum redundancy In the data

redundancy is the primary means of
Increasing the speed of access to data
Index

File Organization

Pile
Sequential file

Indexed sequential file
Indexed file

Direct, or hashed, file

File Organization

Pile
data are collected in the order they arrive

purpose Is to accumulate a mass of data and
save It

records may have different fields

length of a record must be specified either
iImplicitly or explicitly

no structure
record access Is by exhaustive search

Variable-length records
Variable set of fields
Chronological order

(a) Pile File

File Organization

Sequential File
fixed format used for records
records are of the same length

same number of fixed-length fields in a
particular order
one particular field is the key field
uniquely identifies the record
records are stored in key sequence

typically used In batch applications
Involve the processing of all the records

File Organization

Sequential File

poor performance for interactive applications
gueries and/or updates of individual records

additions to the sequential file
new records are placed in a log file or transaction
file
batch update is performed to merge the log file
with the master file
an alternative Is to organize the sequential
file as a linked list

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b) Sequential File

File Organization

Indexed Sequential File

an approach to overcome the disadvantages
of the sequential file

records are organized in sequence based on a key
field

an index to the file to support random access

overflow table
similar to the log file

File Organization

Indexed Sequential File

Index provides a lookup capability to quickly
reach the vicinity of the desired record
contains key field and a pointer to the main file

Index is searched to find highest key value that is
equal or less than the desired key value

search continues Iin the main file at the location
Indicated by the pointer

File Organization

Comparison of sequential and indexed
sequential

Example: a file contains 1 million records

On average 500,000 accesses are required to
find a record Iin a sequential file

If an Index contains 1000 entries, it will take
on average 500 accesses to find the key,
followed by 500 accesses in the main file.
Now on average it iIs 1000 accesses

File Organization

Indexed Sequential File
new records are added to an overflow file

record in main file that precedes it is updated
to contain a pointer to the new record

the overflow file iIs merged with the main file
during a batch update

n

Index Main File
levels
2 e

| S ||||i_

,fl
l

Overflow |«
File

(¢) Indexed Sequential File

File Organization

Indexed File

limitation of indexed sequential file

effective processing is limited to that which is
based on a single field of the file

uses multiple indexes for different key fields
when a new record is added to the main file,
all of the index files must be updated

used in applications where timeliness of

iInformation is critical
airline reservation systems

Exhaustive Exhaustive Partial
index index

Primary File
(variable-length records)

(d) Indexed File

File Organization

The Direct or Hashed File
key field required for each record

hashing on the key value to get the location
of the record
used where

rapid access is required
fixed length records are used

File Organization

The Direct, or Hashed, File

Hash
Functio >
Key
Primary
File
Overflow
File

Table12.1 Gradesof performancefor five basic file organizations

Space Update Retrieval
Attrnibutes Record Size
File Method Vanable Fixed Equal Greater Single record Subset Exhaustive
Pile A B A E E D B
Sequential F A D F F D A
Indexed F B B D B D B
sequential
Indexed B C C C A B D
Hashed F B B F B F E
A = Excellent, well suited to this purpose = 0(r)
B = Good = (o xXr)
C = Adequate = O(r log n)
D = Requires some extra effort = 0(n)
E = Possible with extreme effort = O(r X n)
F = Not reasonable for this purpose = O(n”1)
where
r = size of the result
o = number of records that overtlow

i

number of records 1n file

File Directories

Contains information about files
attributes
location
ownership
Directory itself is a file owned by the
operating system

Provides mapping between file names and
the files themselves

Simple Structure for a

Directory

List of entries,

one for each file

Sequential file with the name of the file

serving as the
Provides no he
Forces user to

Key
p In organizing the files

ne careful not to use the

same name for two different files

the problem is

much worse in shared system

Two-level Scheme for a
Directory

One directory for each user and a master
directory

Master directory contains entry for each user
provides address and access control information

Each user directory is a simple list of files for
that user

still provides no help in structuring collections of files

Hierarchical, or Tree-
Structured Directory

Master directory with user directories
underneath it

Each user directory may have
subdirectories and files as entries

Files can be located by following a path
from the root, or master, directory down
various branches

this Is the pathname for the file

Master Directory

Subirectory Subirectory Subirectory

o | N

Subirectory Subirectory File

] s

File File File

Figure 12.4 Tree-Structured Directory

Hierarchical, or Tree-
Structured Directory

Can have several files with the same file
name as long as they have unique path
names

Current directory Is the working directory

Files can be referenced relative to the
working directory

Master Directory

System

User A

Lizer B

Liser C

Directory
"User C"'

Directory *"Wird"'

—

L Directory
Directory "User B" MLser A"
Draw
Word
™ Directory ""Draw"”

Unit A —

Directory "'Unit A"

File
TARCY

ARC

Pathname: Mlser B Word'UnitASA BT

File
"ARC"

Figure 12.5 Example of Tree-Structured Directory

File Sharing

Typical multiuser system allows files to be
shared among users
Two Issues

access rights

management of simultaneous access

Access Rights

None
user may not know of the existence of a file

user is not allowed to read the user directory
that includes the file

Knowledge

user can only determine that the file exists
and who its owner Is

Access Rights

Execution

the user can load and execute a program but
cannot copy it

Reading

the user can read the file for any purpose,
Including copying and execution

Appending

the user can add data to the file but cannot
modify or delete any of the file’'s contents

useful in collecting data from different users

Access Rights

Updating
the user can modify, delete, and add to the
file's data

Changing protection

user can change the access rights granted to
other users

Deletion
user can delete the file

Access Rights

owners
has all rights previously listed
may grant rights to others using the following
classes of users
specific user

user groups
all

Simultaneous Access

User may lock entire file when it Is to be
updated

User may lock the individual records
during the update

Mutual exclusion and deadlock are i1ssues
for simultaneous access

Record Blocking

Records and Blocks
records are the logical unit of access of a file
blocks are the unit of 1/0 with secondary storage

Issues to consider
fixed or variable block

size of a block

If a file is processed sequentially, larger blocks can reduce
number of 1/0 operations

If records are accessed randomly, larger blocks result in the
unnecessary transfer of unused records

Fixed Blocking

Fixed-length records are used
Integral number of records are stored In a
block

There may be unused space at the end of
each block
Internal fragmentation

Commonly used for sequential files

Fixed Blocking

R1 R2 R3 R4
RS R6 R7 RS
Fixed Blocking
Data Q Waste due to record fit to block size
Gaps due to hardware design @ Waste due to block size constraint

from fixed record size

N

Waste due to block fit to track size

Variable Blocking :
Spanned

Variable-length records are used

Records are packed into blocks with no
unusea space
some records may span two blocks

It Is indicated by a pointer to the successor
block

Efficient use of storage and no limit on
the size of records

But difficult to implement

Variable Blocking :
Spanned

7B
R1 R2 R3 R4 R4 RS R6 //’, Irack 1

T

v +¥ 3

N
7
R6 R7 RS RY R9 | RI10 R11 |R12 [RI13 \f I'rack 2

Variable Blocking: Spanned

Data Q Waste due to record fit to block size

Gaps due to hardware design @ Waste due to block size constraint
from fixed record size

N

Waste due to block fit to track size

Variable Blocking :
Unspanned

Variable-length records are used
Spanning is not employed
there is a wasted space in most blocks

Results in wasted space and limits record
size

Variable Blocking :
Unspanned

R1 R2 R3

.

Y ...
R4 RS @; Irack 1

R6 R7 &\\Q RS R9 R10

Variable Blocking: Unspanned

Track 2

Y/
K

Data Q Waste due to record fit to block size

Gaps due to hardware design @ Waste due to block size constraint
from fixed record size

N

Waste due to block fit to track size

Secondary Storage
Management

A file consists of a collection of blocks

Management Issues

File allocation

space on secondary storage must be allocated to
files

Free space management

must keep track of the space available for
allocation

File Allocation

Issues to consider
preallocation VS dynamic allocation
unit of allocation

file allocation table(FAT)

a data structure that is used to keep track of the
space assigned to a file

Preallocation

Need the maximum size for the file at the
time of creation

Difficult to reliably estimate the maximum

potential size of the file

tend to overestimate file size so as not to run
out of space

So there are advantages to the use of
dynamic allocation

Portion Size

Tradeoff between user’s view efficiency vs
overall system efficiency
Contiguity of space increases performance

Large number of small portions increases the
size of management tables

Fixed-size simplifies the reallocation of space

Variable-size minimizes waste of unused
storage

Portion Size

Two major alternatives

Variable, large contiguous portions
avoids wasted space
file allocation tables are small
space is hard to reuse

Blocks
provides greater flexibility
requires large allocation tables
contiguity is abandoned

Methods of File Allocation

File allocation methods
Contiguous allocation
Chained allocation
Indexed allocation

Methods of File Allocation

Contiguous allocation

a single contiguous set of blocks Is allocated
to a file at the time of creation
preallocation using variable-size portions

only a single entry in the file allocation table
starting block and length of the file

external fragmentation will occur

difficult to find contiguous blocks of sufficient
length

compaction is needed from time to time

B

File A
0 1) NN K] NN TN
5 6 7 8 9
File B
10 11 12 13 14
15 16 17 18V 190/
File C
200 1070 2207 23V 2417
File E
25;;;| 26 27 28 29
File]J
3R 3R 32[|33[|34
R__ _J

File Allocation Table

File Name Start Block Length
File A 2 3
File B 9 5
File C 18 8
File D 30 2
File E 26 3

Figure 12.7 Contiguousfile allocation

File Allocation Table

File Name Start Block Length
File A 0 3
File B 3 5
File C 8 8
File D 19 2
File E 16 3

25 26 27 28 29
30 31 32 33 34
S I

Figure 12.8 Contiguousfile allocation (after compaction)

Methods of File Allocation

Chained allocation
allocation on an individual block basis

each block contains a pointer to the next block
In the chalin

only single entry in the file allocation table
starting block and length of file

no external fragmentation
any free block can be added to the chain

no accommodation of the principle of locality
some systems periodically consolidate files

10

15

20

25

30

File Allocation Table

File Name Start Block Length

L N LI I LN

File B 1 5

L LI I LN

11 12 13 14
16 17 18 19
21 22 23 24
26 27 28 29
31 32 33 34

Figure 12.12 Chained allocation

File Allocation Table

File Name Start Block

Length

File B 0

S

File B
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24
25 26 27 28 29
30 31 32 33 34

Figure 12.10 Chained allocation (after consolidation)

Methods of File Allocation

Indexed allocation : Unix file system

the file allocation table contains block number
for the Index

the index block has one entry for each portion
allocated to the file

allocation may be either fixed-size or
variable-size

Ln

File Allocation Table

File Name

Index Block

File B

24

File B
1\ 2 3 4
6 7 /E: 9
11 12 13 14
16 17 18 9
N —
21 22 23 24
26 27 28 29
31 32 33 34

Figure 12.11 Indexed allocation with block portions

File Allocation Table

File Name Index Block
File B 24
10 11 12
15 16 17
. Start Block Length

20 21 22 1 3

28 4
25 26 27 14 1

ol 3] 32[33]34
R__

Figure 12.12 Indexed allocation with variable-length portions

Table 12.3 File Allocation Methods

Contiguous Chained Indexed
Pre-Allocation? Necessary Possible Possible
Fixed or variable size | Vanable Fixed blocks Fixed blocks Variable
portions?
Portion size Large Small Small Medium
Allocation frequency Once Low to high High Low
Time to allocate Medium Long Short Medium
File allocation table One entry One entry Large Medium
size

Free Space Management

The space that is not currently allocated
to any file must be managed

Disk allocation table
manages what blocks on the disk are free

Methods for free space management
Bit tables
Chained free portions
Indexing
Free block list

Bit Tables

A vector containing one bit for each block
on the disk Is used

entry of O corresponds to a free block

an example
00111000011111000011111111111011000

easy to find free blocks
It Is as small as possible

B

File A
0 1) NN K] NN TN
5 6 7 8 9
File B
10 11 12 13 14
15 16 17 18V 190/
File C
200 1070 2207 23V 2417
File E
25;;;| 26 27 28 29
File]J
3R 3R 32[|33[|34
R__ _J

File Allocation Table

File Name Start Block Length
File A 2 3
File B 9 5
File C 18 8
File D 30 2
File E 26 3

Figure 12.7 Contiguousfile allocation

Chained Free Portions

Free portions are chained by using a
pointer
no need for a disk allocation table

Every time a block is allocated, pointer
needs to be adjusted

If many individual blocks need to be allocated
at one time, this greatly slows down the

process

Indexing

Index table Is used

one entry in the table for every free portion
on the disk

Provides efficient support for all of the file
allocation methods

Free Block List

Each block is assigned a number

Numbers of all free blocks are maintained

assuming 32 bits for a block number, size of
the free block list is 32 times the size of the
bit table
Only a small part of the list may reside In
main memory

stack or FIFO queue can be used for this
purpose

Reliability

Consistency problem of disk allocation
and file allocation table between main
memory and disk

due to the fact that the system maintained a

copy of the disk allocation table and file
allocation table in main memory for efficiency

UNIX File Management

Files are streams of bytes

Types of files

ordinary - contents entered by user or
program

directory - contains list of file names and
pointers to inodes (index nodes)

special - used to access peripheral devices
named - named pipes

UNIX File System

Disk Drive

Partition

Partition Partition

File System |

I-list

Boot Block(s) <J

Super Block <—

I-list

I-node

UNIX File System: I-node

File owner, group owner identifier
File type

File access permission

Access, modified time

Number of links to the file

File size
Table of contents for the disk addresses of data

UNIX File System In More
Detall

Boot Block(s)<—| |—>Super Block = Directory Blocks and Data Blocks
] ‘ ‘ o data data directory data directory
File System I-list block | | block block block| | block

I-node| i-node I-node I-node

* i-node

number

file name

i-node
number

file name

Direct (i)

Directil)

Direct(2)

Direct(3)

Directi4)

Direct(s)

Direct(6)

Direct(T)

Direct(®)

Direct(®)

single
indirect

double
indirect

triple
indirect

Inode address
Tields

—

Bliocks on disk

Figure 12.13 UNIX Block Addressing Scheme

Table 12.5 Capacity of a UNIX File

Level

Number of Blocks

Number of Bytes

Direct
Single Indirect
Double Indirect

Triple Indirect

10

256 x 256 = 65K

256 x 65K = 16M

10K

256K

65M

16G

Windows 2000 File System

Key features of NTFS
Recoverabllity
Security
Large disks and large files
Multiple data streams
General indexing facility

Windows NT File System

Sector - smallest unit of storage on a disk
Cluster - one or more contiguous sectors
Volume - logical partition on a disk

Table 12.6 Windows NTFS Partition and Cluster Sizes

Volume Size Sectors per Cluster Cluster Size
<512 Mbyte 1 512 bytes
512 Mbyte - 1 Gbyte 2 1K
| Gbyte - 2 Gbyte 4 2K
2 Gbyte - 4 Gbyte 8 4K
4 Gbyte - 8 Gbyte 16 8K
8 Gbyte - 16 Gbyte 32 16K
16 Gbyte - 32 Gbyte 64 32K

> 32 Gbyte 128 64K

partition
boot Master File Table
sector

System

Files File Area

Figure 12.14 NTFS Volume Layout

