
File Management

Chapter 12

Contents

?Overview
?File organization and Access
?File directories
?File sharing
?Record blocking
?Secondary storage management
?Unix file management
?Windows 2000 file system

File Management

?In most applications, the file is the central
element
?Input to applications is by means of a file
?Output is saved in a file for long-term storage

?File management system is considered
part of the operating system

Terms Used with Files

?Field
?basic element of data
?contains a single value
?characterized by its length and data type

?Record
?collection of related fields
?treated as a unit
?Example: employee record

Terms Used with Files

?File
?collection of similar records
?treated as a single entity by users
?have unique names
?access control apply at this level
?in some systems, such controls are enforced at

the record level

?Database
?collection of related data
?consists of one or more types of files

Typical Operations on Files

?Retrieve_All
?Retrieve_One
?Retrieve_Next
?Retrieve_Previous
?Insert_One
?Delete_One
?Update_One
?Retrieve_Few

File Management System

?Set of system software that provides
services to users and applications in the
use of files
?the only way that a user or application may

access files is through the file management
system

Objectives for a
File Management System

?Meet the data management needs and
requirements of the user
?Guarantee that the data in the file are

valid
?Optimize performance
?throughput and response time

?Provide I/O support for a variety of
storage device types

Objectives for a
File Management System

?Minimize or eliminate the potential for lost
or destroyed data
?Provide a standardized set of I/O interface

routines
?Provide I/O support for multiple users

Minimal Set of Requirements

?Each user should be able to create,
delete, read, and change files
?Each user may have controlled access to

other users’ files
?Each user may control what type of

accesses are allowed to the user’s files
?Each user should be able to restructure

the user’s files in a form appropriate to
the problem

Minimal Set of Requirements

?Each user should be able to move data
between files
?Each user should be able to back up and

recover the user’s files in case of damage
?Each user should be able to access the

user’s files by using symbolic names

Criteria for File Organization

?Rapid access
?Ease of update
?Economy of storage
?Simple maintenance
?Reliability

Criteria for File Organization

?These criteria may conflict
?for economy of storage, there should be

minimum redundancy in the data
?redundancy is the primary means of

increasing the speed of access to data
?index

File Organization

?Pile
?Sequential file
?Indexed sequential file
?Indexed file
?Direct, or hashed, file

File Organization

?Pile
?data are collected in the order they arrive
?purpose is to accumulate a mass of data and

save it
?records may have different fields
?length of a record must be specified either

implicitly or explicitly

?no structure
?record access is by exhaustive search

File Organization

?Sequential File
?fixed format used for records
?records are of the same length
?same number of fixed-length fields in a

particular order
?one particular field is the key field
?uniquely identifies the record
?records are stored in key sequence

?typically used in batch applications
?involve the processing of all the records

File Organization

?Sequential File
?poor performance for interactive applications
?queries and/or updates of individual records

?additions to the sequential file
?new records are placed in a log file or transaction

file
?batch update is performed to merge the log file

with the master file

?an alternative is to organize the sequential
file as a linked list

File Organization

?Indexed Sequential File
?an approach to overcome the disadvantages

of the sequential file
?records are organized in sequence based on a key

field
?an index to the file to support random access
?overflow table
?similar to the log file

File Organization

?Indexed Sequential File
?index provides a lookup capability to quickly

reach the vicinity of the desired record
?contains key field and a pointer to the main file
?index is searched to find highest key value that is

equal or less than the desired key value
?search continues in the main file at the location

indicated by the pointer

File Organization

?Comparison of sequential and indexed
sequential
?Example: a file contains 1 million records
?On average 500,000 accesses are required to

find a record in a sequential file
?If an index contains 1000 entries, it will take

on average 500 accesses to find the key,
followed by 500 accesses in the main file.
Now on average it is 1000 accesses

File Organization

?Indexed Sequential File
?new records are added to an overflow file
?record in main file that precedes it is updated

to contain a pointer to the new record
?the overflow file is merged with the main file

during a batch update

File Organization

?Indexed File
?limitation of indexed sequential file
?effective processing is limited to that which is

based on a single field of the file

?uses multiple indexes for different key fields
?when a new record is added to the main file,

all of the index files must be updated
?used in applications where timeliness of

information is critical
?airline reservation systems

File Organization

?The Direct or Hashed File
?key field required for each record
?hashing on the key value to get the location

of the record
?used where
?rapid access is required
?fixed length records are used

File Organization

The Direct, or Hashed, File

fKey

Hash
Function

Primary
File

Overflow
File

Table 12.1 Grades of performance for five basic file organizations

File Directories

?Contains information about files
?attributes
?location
?ownership

?Directory itself is a file owned by the
operating system
?Provides mapping between file names and

the files themselves

Simple Structure for a
Directory

?List of entries, one for each file
?Sequential file with the name of the file

serving as the key
?Provides no help in organizing the files
?Forces user to be careful not to use the

same name for two different files
?the problem is much worse in shared system

Two-level Scheme for a
Directory

?One directory for each user and a master
directory

?Master directory contains entry for each user
?provides address and access control information

?Each user directory is a simple list of files for
that user
?still provides no help in structuring collections of files

Hierarchical, or Tree-
Structured Directory

?Master directory with user directories
underneath it
?Each user directory may have

subdirectories and files as entries
?Files can be located by following a path

from the root, or master, directory down
various branches
?this is the pathname for the file

Hierarchical, or Tree-
Structured Directory

?Can have several files with the same file
name as long as they have unique path
names
?Current directory is the working directory
?Files can be referenced relative to the

working directory

File Sharing

?Typical multiuser system allows files to be
shared among users
?Two issues
?access rights
?management of simultaneous access

Access Rights

?None
?user may not know of the existence of a file
?user is not allowed to read the user directory

that includes the file

?Knowledge
?user can only determine that the file exists

and who its owner is

Access Rights

?Execution
?the user can load and execute a program but

cannot copy it

?Reading
?the user can read the file for any purpose,

including copying and execution
?Appending
?the user can add data to the file but cannot

modify or delete any of the file’s contents
?useful in collecting data from different users

Access Rights

?Updating
?the user can modify, delete, and add to the

file’s data

?Changing protection
?user can change the access rights granted to

other users

?Deletion
?user can delete the file

Access Rights

?Owners
?has all rights previously listed
?may grant rights to others using the following

classes of users
?specific user
?user groups
?all

Simultaneous Access

?User may lock entire file when it is to be
updated
?User may lock the individual records

during the update
?Mutual exclusion and deadlock are issues

for simultaneous access

Record Blocking

?Records and Blocks
?records are the logical unit of access of a file
?blocks are the unit of I/O with secondary storage

?Issues to consider
?fixed or variable block
?size of a block
?if a file is processed sequentially, larger blocks can reduce

number of I/O operations
?if records are accessed randomly, larger blocks result in the

unnecessary transfer of unused records

Fixed Blocking

?Fixed-length records are used
?Integral number of records are stored in a

block
?There may be unused space at the end of

each block
?internal fragmentation

?Commonly used for sequential files

Fixed Blocking

Variable Blocking :
Spanned

?Variable-length records are used
?Records are packed into blocks with no

unused space
?some records may span two blocks
?it is indicated by a pointer to the successor

block

?Efficient use of storage and no limit on
the size of records
?But difficult to implement

Variable Blocking :
Spanned

Variable Blocking :
Unspanned

?Variable-length records are used
?Spanning is not employed
?there is a wasted space in most blocks

?Results in wasted space and limits record
size

Variable Blocking :
Unspanned

Secondary Storage
Management

?A file consists of a collection of blocks
?Management issues
?File allocation
?space on secondary storage must be allocated to

files

?Free space management
?must keep track of the space available for

allocation

File Allocation

?Issues to consider
?preallocation VS dynamic allocation
?unit of allocation
?file allocation table(FAT)
?a data structure that is used to keep track of the

space assigned to a file

Preallocation

?Need the maximum size for the file at the
time of creation
?Difficult to reliably estimate the maximum

potential size of the file
?tend to overestimate file size so as not to run

out of space

?So there are advantages to the use of
dynamic allocation

Portion Size

?Tradeoff between user’s view efficiency vs
overall system efficiency
?Contiguity of space increases performance
?Large number of small portions increases the

size of management tables
?Fixed-size simplifies the reallocation of space
?Variable-size minimizes waste of unused

storage

Portion Size

?Two major alternatives
?Variable, large contiguous portions
?avoids wasted space
?file allocation tables are small
?space is hard to reuse

?Blocks
?provides greater flexibility
?requires large allocation tables
?contiguity is abandoned

Methods of File Allocation

?File allocation methods
?Contiguous allocation
?Chained allocation
?Indexed allocation

Methods of File Allocation

?Contiguous allocation
?a single contiguous set of blocks is allocated

to a file at the time of creation
?preallocation using variable-size portions

?only a single entry in the file allocation table
?starting block and length of the file

?external fragmentation will occur
?difficult to find contiguous blocks of sufficient

length
?compaction is needed from time to time

Figure 12.7 Contiguous file allocation

Figure 12.8 Contiguous file allocation (after compaction)

Methods of File Allocation

?Chained allocation
?allocation on an individual block basis
?each block contains a pointer to the next block

in the chain
?only single entry in the file allocation table
?starting block and length of file

?no external fragmentation
?any free block can be added to the chain
?no accommodation of the principle of locality
?some systems periodically consolidate files

Figure 12.12 Chained allocation

Figure 12.10 Chained allocation (after consolidation)

Methods of File Allocation

?Indexed allocation : Unix file system
?the file allocation table contains block number

for the index
?the index block has one entry for each portion

allocated to the file

?allocation may be either fixed-size or
variable-size

Figure 12.11 Indexed allocation with block portions

Figure 12.12 Indexed allocation with variable-length portions

Free Space Management

?The space that is not currently allocated
to any file must be managed
?Disk allocation table
?manages what blocks on the disk are free

?Methods for free space management
?Bit tables
?Chained free portions
?Indexing
?Free block list

Bit Tables

?A vector containing one bit for each block
on the disk is used
?entry of 0 corresponds to a free block
?an example
?00111000011111000011111111111011000

?easy to find free blocks
?it is as small as possible

Figure 12.7 Contiguous file allocation

Chained Free Portions

?Free portions are chained by using a
pointer
?no need for a disk allocation table

?Every time a block is allocated, pointer
needs to be adjusted
?if many individual blocks need to be allocated

at one time, this greatly slows down the
process

Indexing

?Index table is used
?one entry in the table for every free portion

on the disk

?Provides efficient support for all of the file
allocation methods

Free Block List

?Each block is assigned a number
?Numbers of all free blocks are maintained
?assuming 32 bits for a block number, size of

the free block list is 32 times the size of the
bit table

?Only a small part of the list may reside in
main memory
?stack or FIFO queue can be used for this

purpose

Reliability

?Consistency problem of disk allocation
and file allocation table between main
memory and disk
?due to the fact that the system maintained a

copy of the disk allocation table and file
allocation table in main memory for efficiency

UNIX File Management

?Files are streams of bytes
?Types of files
?ordinary - contents entered by user or

program
?directory - contains list of file names and

pointers to inodes (index nodes)
?special - used to access peripheral devices
?named - named pipes

UNIX File System

Partition Partition PartitionDisk Drive

i-list Directory Blocks and Data BlocksFile System

Boot Block(s)

Super Block

i-nodei-list i-node i-node. . .

UNIX File System: i-node

?File owner, group owner identifier
?File type
?File access permission
?Access, modified time
?Number of links to the file
?File size
?Table of contents for the disk addresses of data

UNIX File System in More
Detail

i-list

Directory Blocks and Data Blocks

File System

Boot Block(s) Super Block

data
block

data
block

data
block

directory
block

directory
block

file namei-node
number

file namei-node
number

i-node i-node i-node i-node

firs
t data

block
second data block

third data block

Windows 2000 File System

?Key features of NTFS
?Recoverability
?Security
?Large disks and large files
?Multiple data streams
?General indexing facility

Windows NT File System

?Sector - smallest unit of storage on a disk
?Cluster - one or more contiguous sectors
?Volume - logical partition on a disk

